1
0
Fork 0
mirror of https://github.com/hb9fxq/gr-digitalhf synced 2024-11-18 10:47:46 +00:00
gr-digitalhf/python/physical_layer/STANAG_4539_AppD.py
2019-11-05 21:25:48 +01:00

209 lines
9.9 KiB
Python

## -*- python -*-
from __future__ import print_function
import numpy as np
import common
PREAMBLE = common.n_psk(8, np.array([ 2,6,4,4,6,4,6,2,6,0 # 1
,2,2,0,4,6,2,2,0,2,6 # 2
,0,6,4,0,2,0,6,6,6,4 # 3
,0,6,0,6,2,2,0,4,2,4 # 4
,0,2,2,2,2,6,4,6,6,2 # 5
,4,6,4,6,2,6,0,2,4,0 # 6
,0,0,6,6,2,6,2,2,0,2 # 7
,4,4,6,4,6,0,4,0,6,6 # 8
,2,2,0,0,6,6,4,0,4,0 # 9
,0,6,6,6,4,6,4,6,0,2 # 10
,2,6,0,0,0,2,6,2,0,0 # 11
,6,2,6,0,4,6,6,4,0,6 # 12
,2,6,2,4,4,2,0,6,2,6 # 13
,0,0,4,2,4,0,6,0,4,4 # 14
,2,2,6,0,2,2,0,6,4,2 # 15
,2,4,0,6,0,4,6,4,0,2 # 16
,2,0,2,2,2,2,4,4,0,2 # 17
,6,2,2,4,6,6,6,2,6,4 # 18
,2,0,0,0,2,2,4,0,0,6 # 19
,6,4,2,0,0,0,0,2,0,4 # 20
,2,2,4])) ## 203 symbols
## ---- constellatios -----------------------------------------------------------
BPSK=np.array(zip(np.exp(2j*np.pi*np.arange(2)/2), [0,1]), common.CONST_DTYPE)
QPSK=np.array(zip(np.exp(2j*np.pi*np.arange(4)/4), [0,1,3,2]), common.CONST_DTYPE)
PSK8=np.array(zip(np.exp(2j*np.pi*np.arange(8)/8), [0,1,3,2,6,7,5,4]), common.CONST_DTYPE)
## ---- constellation indices ---------------------------------------------------
MODE_BPSK=0
MODE_QPSK=1
MODE_8PSK=2
## ---- physcal layer class -----------------------------------------------------
class PhysicalLayer(object):
"""Physical layer description for STANAG 4539 Appendix D"""
def __init__(self, sps):
"""intialization"""
self._sps = sps
self._frame_counter = -1
self._constellations = [BPSK, QPSK, PSK8]
self._preamble = self.get_preamble()
self._mode = {}
self._mode_description = 'UNKNOWN'
def get_constellations(self):
return self._constellations
def get_next_frame(self, symbols):
"""returns a tuple describing the frame:
[0] ... known+unknown symbols and scrambling
[1] ... modulation type after descrambling
[2] ... a boolean indicating if the processing should continue
[3] ... a boolean indicating if the soft decision for the unknown
symbols are saved"""
print('-------------------- get_frame --------------------',
self._frame_counter, len(symbols))
success = True
if self._frame_counter == -1: ## preamble mode
if len(symbols) == 0:
return [self._preamble,MODE_BPSK,success,False]
else:
success = self.decode_preamble(symbols)
return [self._preamble,MODE_BPSK,success,False]
# else: ## data mode
# self._frame_counter += 1
# ##print('test:', symbols[self._mode['unknown']:], np.mean(np.real(symbols[self._mode['unknown']:])))
# if self._mode['known'] == 0: ## orthogonal WALSH modulation
# success = True
# for i in range(5):
# a = symbols[32*i:32*(i+1)]
# success &= np.max(np.imag(np.mean(a.reshape(8,4),0))) < 0.25
# elif self._frame_counter < self._num_frames_per_block-2:
# success = np.mean(np.real(symbols[self._mode['unknown']:])) > 0.4 or np.max(np.imag(symbols[self._mode['unknown']:])) < 0.6
# if not success:
# print('aborting: ', symbols[self._mode['unknown']:])# np.mean(np.real(symbols[self._mode['unknown']:])),
# #np.max(np.imag(symbols[self._mode['unknown']:])))
# return [self.get_next_data_frame(success),self._mode['ci'],success,success]
def get_next_data_frame(self, success):
# if self._frame_counter == self._num_frames_per_block:
# self._frame_counter = 0
# scramble_for_frame = common.n_psk(8, np.array([self._scr_data.next()
# for _ in range(self._frame_len)]))
# a = common.make_scr(scramble_for_frame, scramble_for_frame)
# n_unknown = self._mode['unknown']
# a['symb'][0:n_unknown] = 0
# if self._mode['known'] != 0 and self._frame_counter >= self._num_frames_per_block-2:
# idx_d1d2 = self._frame_counter - self._num_frames_per_block + 2;
# a['symb'][n_unknown :n_unknown+ 8] *= common.n_psk(2, WALSH8[self._d1d2[idx_d1d2]][:])
# a['symb'][n_unknown+8:n_unknown+16] *= common.n_psk(2, WALSH8[self._d1d2[idx_d1d2]][:])
# if not success:
# self._frame_counter = -1
# self._pre_counter = -1
# return a
return False
def get_doppler(self, iq_samples):
"""quality check and doppler estimation for preamble"""
r = {'success': False, ## -- quality flag
'use_amp_est': False, ##self._frame_counter < 0,
'doppler': 0} ## -- doppler estimate (rad/symb)
if len(iq_samples) != 0:
sps = self._sps
## find starting point
_,zp = self.get_preamble_z()
cc = np.correlate(iq_samples, zp[0:40*sps])
imax = np.argmax(np.abs(cc[0:20*sps]))
print('imax=', imax, len(iq_samples), len(cc))
apk = np.abs(cc[imax])
tpk = np.abs(cc[imax+20*sps])
print('imax=', imax, 'apk=', apk, 'tpk=', tpk)
r['success'] = np.bool(apk > 2*tpk)
if r['success']:
idx = np.arange(40*sps)
pks = [np.vdot(zp[ i*40*sps+idx],
iq_samples[imax+i*40*sps+idx])
for i in range(4)]
r['doppler'] = common.freq_est(pks)/(40*sps)
print('success=', r['success'], 'doppler=', r['doppler'],
np.abs(np.array(pks)),
np.angle(np.array(pks)))
return r
def decode_preamble(self, symbols):
print('decode_preamble', symbols)
mean_symb = np.mean(symbols[-40:])
success = np.real(mean_symb) > 0.6
print('decode_preamble', mean_symb, success)
return success
# data = [FROM_WALSH8[np.packbits
# (np.real
# (np.sum
# (symbols[i:i+32].reshape((4,8)),0))<0)[0]]
# for i in range(0,15*32,32)]
# print('data=',data)
# self._pre_counter = sum([(x&3)*(1<<2*y) for (x,y) in zip(data[11:14][::-1], range(3))])
# self._d1d2 = data[9:11]
# print('MODE:', data[9:11])
# self._mode = mode = MODE[data[9]][data[10]]
# self._block_len = 11520 if mode['interleaver'][0] == 'L' else 1440
# self._frame_len = mode['known'] + mode['unknown']
# if mode['known'] == 0: ## orthogonal WALSH modulation
# self._num_frames_per_block = mode['interleaver'][1]*mode['interleaver'][2]/2*32/160
# else:
# self._num_frames_per_block = self._block_len/self._frame_len
# self._deinterleaver = Deinterleaver(mode['interleaver'][1], mode['interleaver'][2])
# self._depuncturer = common.Depuncturer(repeat=mode['repeat'])
# self._viterbi_decoder = viterbi27(0x6d, 0x4f)
# self._mode_description = 'MIL_STD_188-110A: (%d,%d) %dbps intl=%s [U=%d,K=%d]' % (data[9],data[10],
# mode['bit_rate'],
# mode['interleaver'][0],
# mode['unknown'], mode['known'])
# print(self._d1d2, mode, self._frame_len, self._mode_description)
def set_mode(self, _):
pass
def get_mode(self):
return self._mode_description
def decode_soft_dec(self, soft_dec):
print('decode_soft_dec', len(soft_dec), soft_dec.dtype)
if self._mode['known'] == 0: ## orthogonal WALSH modulation
n = len(soft_dec) // 32
soft_bits = np.zeros(2*n, dtype=np.float32)
for i in range(n):
w = np.sum(soft_dec[32*i:32*(i+1)].reshape(4,8),0)
b = FROM_WALSH4[np.packbits(w[0:4]>0)[0]]
print('WALSH', i, w, b)
abs_soft_dec = np.mean(np.abs(w))
soft_bits[2*i] = abs_soft_dec*(2*(b>>1)-1)
soft_bits[2*i+1] = abs_soft_dec*(2*(b &1)-1)
print('WALSH soft_bits=', soft_bits)
r = self._deinterleaver.load(soft_bits)
else:
r = self._deinterleaver.load(soft_dec)
print('decode_soft_dec r=', r.shape)
if r.shape[0] == 0:
return [],0.0
##print('deinterleaved bits: ', [x for x in 1*(r>0)])
rd = self._depuncturer.process(r)
self._viterbi_decoder.reset()
decoded_bits = self._viterbi_decoder.udpate(rd)
##print('bits=', decoded_bits)
quality = 100.0*self._viterbi_decoder.quality()/(2*len(decoded_bits))
print('quality={}%'.format(quality))
return decoded_bits,quality
@staticmethod
def get_preamble():
"""preamble symbols + scrambler"""
return common.make_scr(PREAMBLE,PREAMBLE)
def get_preamble_z(self):
"""preamble symbols for preamble correlation"""
a = PhysicalLayer.get_preamble()
return 1,np.array([z for z in a['symb']
for _ in range(self._sps)])
if __name__ == '__main__':
print(PREAMBLE)