mirror of
https://github.com/hb9fxq/gr-digitalhf
synced 2024-11-18 10:47:46 +00:00
209 lines
9.9 KiB
Python
209 lines
9.9 KiB
Python
## -*- python -*-
|
|
|
|
from __future__ import print_function
|
|
import numpy as np
|
|
import common
|
|
|
|
PREAMBLE = common.n_psk(8, np.array([ 2,6,4,4,6,4,6,2,6,0 # 1
|
|
,2,2,0,4,6,2,2,0,2,6 # 2
|
|
,0,6,4,0,2,0,6,6,6,4 # 3
|
|
,0,6,0,6,2,2,0,4,2,4 # 4
|
|
,0,2,2,2,2,6,4,6,6,2 # 5
|
|
,4,6,4,6,2,6,0,2,4,0 # 6
|
|
,0,0,6,6,2,6,2,2,0,2 # 7
|
|
,4,4,6,4,6,0,4,0,6,6 # 8
|
|
,2,2,0,0,6,6,4,0,4,0 # 9
|
|
,0,6,6,6,4,6,4,6,0,2 # 10
|
|
,2,6,0,0,0,2,6,2,0,0 # 11
|
|
,6,2,6,0,4,6,6,4,0,6 # 12
|
|
,2,6,2,4,4,2,0,6,2,6 # 13
|
|
,0,0,4,2,4,0,6,0,4,4 # 14
|
|
,2,2,6,0,2,2,0,6,4,2 # 15
|
|
,2,4,0,6,0,4,6,4,0,2 # 16
|
|
,2,0,2,2,2,2,4,4,0,2 # 17
|
|
,6,2,2,4,6,6,6,2,6,4 # 18
|
|
,2,0,0,0,2,2,4,0,0,6 # 19
|
|
,6,4,2,0,0,0,0,2,0,4 # 20
|
|
,2,2,4])) ## 203 symbols
|
|
|
|
## ---- constellatios -----------------------------------------------------------
|
|
BPSK=np.array(zip(np.exp(2j*np.pi*np.arange(2)/2), [0,1]), common.CONST_DTYPE)
|
|
QPSK=np.array(zip(np.exp(2j*np.pi*np.arange(4)/4), [0,1,3,2]), common.CONST_DTYPE)
|
|
PSK8=np.array(zip(np.exp(2j*np.pi*np.arange(8)/8), [0,1,3,2,6,7,5,4]), common.CONST_DTYPE)
|
|
|
|
## ---- constellation indices ---------------------------------------------------
|
|
MODE_BPSK=0
|
|
MODE_QPSK=1
|
|
MODE_8PSK=2
|
|
|
|
|
|
## ---- physcal layer class -----------------------------------------------------
|
|
class PhysicalLayer(object):
|
|
"""Physical layer description for STANAG 4539 Appendix D"""
|
|
|
|
def __init__(self, sps):
|
|
"""intialization"""
|
|
self._sps = sps
|
|
self._frame_counter = -1
|
|
self._constellations = [BPSK, QPSK, PSK8]
|
|
self._preamble = self.get_preamble()
|
|
self._mode = {}
|
|
self._mode_description = 'UNKNOWN'
|
|
|
|
def get_constellations(self):
|
|
return self._constellations
|
|
|
|
def get_next_frame(self, symbols):
|
|
"""returns a tuple describing the frame:
|
|
[0] ... known+unknown symbols and scrambling
|
|
[1] ... modulation type after descrambling
|
|
[2] ... a boolean indicating if the processing should continue
|
|
[3] ... a boolean indicating if the soft decision for the unknown
|
|
symbols are saved"""
|
|
print('-------------------- get_frame --------------------',
|
|
self._frame_counter, len(symbols))
|
|
success = True
|
|
if self._frame_counter == -1: ## preamble mode
|
|
if len(symbols) == 0:
|
|
return [self._preamble,MODE_BPSK,success,False]
|
|
else:
|
|
success = self.decode_preamble(symbols)
|
|
return [self._preamble,MODE_BPSK,success,False]
|
|
# else: ## data mode
|
|
# self._frame_counter += 1
|
|
# ##print('test:', symbols[self._mode['unknown']:], np.mean(np.real(symbols[self._mode['unknown']:])))
|
|
# if self._mode['known'] == 0: ## orthogonal WALSH modulation
|
|
# success = True
|
|
# for i in range(5):
|
|
# a = symbols[32*i:32*(i+1)]
|
|
# success &= np.max(np.imag(np.mean(a.reshape(8,4),0))) < 0.25
|
|
# elif self._frame_counter < self._num_frames_per_block-2:
|
|
# success = np.mean(np.real(symbols[self._mode['unknown']:])) > 0.4 or np.max(np.imag(symbols[self._mode['unknown']:])) < 0.6
|
|
# if not success:
|
|
# print('aborting: ', symbols[self._mode['unknown']:])# np.mean(np.real(symbols[self._mode['unknown']:])),
|
|
# #np.max(np.imag(symbols[self._mode['unknown']:])))
|
|
# return [self.get_next_data_frame(success),self._mode['ci'],success,success]
|
|
|
|
def get_next_data_frame(self, success):
|
|
# if self._frame_counter == self._num_frames_per_block:
|
|
# self._frame_counter = 0
|
|
# scramble_for_frame = common.n_psk(8, np.array([self._scr_data.next()
|
|
# for _ in range(self._frame_len)]))
|
|
# a = common.make_scr(scramble_for_frame, scramble_for_frame)
|
|
# n_unknown = self._mode['unknown']
|
|
# a['symb'][0:n_unknown] = 0
|
|
# if self._mode['known'] != 0 and self._frame_counter >= self._num_frames_per_block-2:
|
|
# idx_d1d2 = self._frame_counter - self._num_frames_per_block + 2;
|
|
# a['symb'][n_unknown :n_unknown+ 8] *= common.n_psk(2, WALSH8[self._d1d2[idx_d1d2]][:])
|
|
# a['symb'][n_unknown+8:n_unknown+16] *= common.n_psk(2, WALSH8[self._d1d2[idx_d1d2]][:])
|
|
# if not success:
|
|
# self._frame_counter = -1
|
|
# self._pre_counter = -1
|
|
# return a
|
|
return False
|
|
|
|
def get_doppler(self, iq_samples):
|
|
"""quality check and doppler estimation for preamble"""
|
|
r = {'success': False, ## -- quality flag
|
|
'use_amp_est': False, ##self._frame_counter < 0,
|
|
'doppler': 0} ## -- doppler estimate (rad/symb)
|
|
if len(iq_samples) != 0:
|
|
sps = self._sps
|
|
## find starting point
|
|
_,zp = self.get_preamble_z()
|
|
cc = np.correlate(iq_samples, zp[0:40*sps])
|
|
imax = np.argmax(np.abs(cc[0:20*sps]))
|
|
print('imax=', imax, len(iq_samples), len(cc))
|
|
apk = np.abs(cc[imax])
|
|
tpk = np.abs(cc[imax+20*sps])
|
|
print('imax=', imax, 'apk=', apk, 'tpk=', tpk)
|
|
r['success'] = np.bool(apk > 2*tpk)
|
|
if r['success']:
|
|
idx = np.arange(40*sps)
|
|
pks = [np.vdot(zp[ i*40*sps+idx],
|
|
iq_samples[imax+i*40*sps+idx])
|
|
for i in range(4)]
|
|
r['doppler'] = common.freq_est(pks)/(40*sps)
|
|
print('success=', r['success'], 'doppler=', r['doppler'],
|
|
np.abs(np.array(pks)),
|
|
np.angle(np.array(pks)))
|
|
return r
|
|
|
|
def decode_preamble(self, symbols):
|
|
print('decode_preamble', symbols)
|
|
mean_symb = np.mean(symbols[-40:])
|
|
success = np.real(mean_symb) > 0.6
|
|
print('decode_preamble', mean_symb, success)
|
|
return success
|
|
# data = [FROM_WALSH8[np.packbits
|
|
# (np.real
|
|
# (np.sum
|
|
# (symbols[i:i+32].reshape((4,8)),0))<0)[0]]
|
|
# for i in range(0,15*32,32)]
|
|
# print('data=',data)
|
|
# self._pre_counter = sum([(x&3)*(1<<2*y) for (x,y) in zip(data[11:14][::-1], range(3))])
|
|
# self._d1d2 = data[9:11]
|
|
# print('MODE:', data[9:11])
|
|
# self._mode = mode = MODE[data[9]][data[10]]
|
|
# self._block_len = 11520 if mode['interleaver'][0] == 'L' else 1440
|
|
# self._frame_len = mode['known'] + mode['unknown']
|
|
# if mode['known'] == 0: ## orthogonal WALSH modulation
|
|
# self._num_frames_per_block = mode['interleaver'][1]*mode['interleaver'][2]/2*32/160
|
|
# else:
|
|
# self._num_frames_per_block = self._block_len/self._frame_len
|
|
# self._deinterleaver = Deinterleaver(mode['interleaver'][1], mode['interleaver'][2])
|
|
# self._depuncturer = common.Depuncturer(repeat=mode['repeat'])
|
|
# self._viterbi_decoder = viterbi27(0x6d, 0x4f)
|
|
# self._mode_description = 'MIL_STD_188-110A: (%d,%d) %dbps intl=%s [U=%d,K=%d]' % (data[9],data[10],
|
|
# mode['bit_rate'],
|
|
# mode['interleaver'][0],
|
|
# mode['unknown'], mode['known'])
|
|
# print(self._d1d2, mode, self._frame_len, self._mode_description)
|
|
|
|
def set_mode(self, _):
|
|
pass
|
|
|
|
def get_mode(self):
|
|
return self._mode_description
|
|
|
|
def decode_soft_dec(self, soft_dec):
|
|
print('decode_soft_dec', len(soft_dec), soft_dec.dtype)
|
|
if self._mode['known'] == 0: ## orthogonal WALSH modulation
|
|
n = len(soft_dec) // 32
|
|
soft_bits = np.zeros(2*n, dtype=np.float32)
|
|
for i in range(n):
|
|
w = np.sum(soft_dec[32*i:32*(i+1)].reshape(4,8),0)
|
|
b = FROM_WALSH4[np.packbits(w[0:4]>0)[0]]
|
|
print('WALSH', i, w, b)
|
|
abs_soft_dec = np.mean(np.abs(w))
|
|
soft_bits[2*i] = abs_soft_dec*(2*(b>>1)-1)
|
|
soft_bits[2*i+1] = abs_soft_dec*(2*(b &1)-1)
|
|
print('WALSH soft_bits=', soft_bits)
|
|
r = self._deinterleaver.load(soft_bits)
|
|
else:
|
|
r = self._deinterleaver.load(soft_dec)
|
|
print('decode_soft_dec r=', r.shape)
|
|
if r.shape[0] == 0:
|
|
return [],0.0
|
|
##print('deinterleaved bits: ', [x for x in 1*(r>0)])
|
|
rd = self._depuncturer.process(r)
|
|
self._viterbi_decoder.reset()
|
|
decoded_bits = self._viterbi_decoder.udpate(rd)
|
|
##print('bits=', decoded_bits)
|
|
quality = 100.0*self._viterbi_decoder.quality()/(2*len(decoded_bits))
|
|
print('quality={}%'.format(quality))
|
|
return decoded_bits,quality
|
|
|
|
@staticmethod
|
|
def get_preamble():
|
|
"""preamble symbols + scrambler"""
|
|
return common.make_scr(PREAMBLE,PREAMBLE)
|
|
def get_preamble_z(self):
|
|
"""preamble symbols for preamble correlation"""
|
|
a = PhysicalLayer.get_preamble()
|
|
return 1,np.array([z for z in a['symb']
|
|
for _ in range(self._sps)])
|
|
|
|
if __name__ == '__main__':
|
|
print(PREAMBLE)
|