1
0
Fork 0
mirror of https://github.com/hb9fxq/gr-digitalhf synced 2024-11-05 05:55:53 +00:00

STANAG_4539_AppD (intermediate)

This commit is contained in:
Christoph Mayer 2019-11-05 21:25:48 +01:00
parent 5954246b15
commit a0a9742fad
6 changed files with 471 additions and 2775 deletions

View file

@ -375,7 +375,7 @@
</param>
<param>
<key>value</key>
<value>0.005</value>
<value>0.01</value>
</param>
<param>
<key>_enabled</key>

File diff suppressed because it is too large Load diff

View file

@ -39,6 +39,7 @@ GR_PYTHON_INSTALL(
MIL_STD_188_110D.py
STANAG_5511.py
HFDL_ARINC635.py
STANAG_4539_AppD.py
DESTINATION ${GR_PYTHON_DIR}/digitalhf/physical_layer
)

View file

@ -241,8 +241,8 @@ class PhysicalLayer(object):
r['success'] = np.bool(np.mean(apks) > 5*np.mean(tpks) and apks[0]/apks[1] > 0.5 and apks[0]/apks[1] < 2.0)
if r['success']:
idx = np.arange(32*sps)
pks = [np.correlate(iq_samples[imax+i*32*sps+idx],
zp[ i*32*sps+idx])[0]
pks = [np.vdot(zp[ i*32*sps+idx],
iq_samples[imax+i*32*sps+idx])
for i in range(9)]
r['doppler'] = common.freq_est(pks)/(32*sps)
print('success=', r['success'], 'doppler=', r['doppler'],
@ -259,7 +259,9 @@ class PhysicalLayer(object):
print('data=',data)
self._pre_counter = sum([(x&3)*(1<<2*y) for (x,y) in zip(data[11:14][::-1], range(3))])
self._d1d2 = data[9:11]
print('MODE:', data[9:11])
print('MODE:', data[9:11], 'pre_counter=', self._pre_counter)
data[9]=5
data[10]=5
self._mode = mode = MODE[data[9]][data[10]]
self._block_len = 11520 if mode['interleaver'][0] == 'L' else 1440
self._frame_len = mode['known'] + mode['unknown']

View file

@ -0,0 +1,208 @@
## -*- python -*-
from __future__ import print_function
import numpy as np
import common
PREAMBLE = common.n_psk(8, np.array([ 2,6,4,4,6,4,6,2,6,0 # 1
,2,2,0,4,6,2,2,0,2,6 # 2
,0,6,4,0,2,0,6,6,6,4 # 3
,0,6,0,6,2,2,0,4,2,4 # 4
,0,2,2,2,2,6,4,6,6,2 # 5
,4,6,4,6,2,6,0,2,4,0 # 6
,0,0,6,6,2,6,2,2,0,2 # 7
,4,4,6,4,6,0,4,0,6,6 # 8
,2,2,0,0,6,6,4,0,4,0 # 9
,0,6,6,6,4,6,4,6,0,2 # 10
,2,6,0,0,0,2,6,2,0,0 # 11
,6,2,6,0,4,6,6,4,0,6 # 12
,2,6,2,4,4,2,0,6,2,6 # 13
,0,0,4,2,4,0,6,0,4,4 # 14
,2,2,6,0,2,2,0,6,4,2 # 15
,2,4,0,6,0,4,6,4,0,2 # 16
,2,0,2,2,2,2,4,4,0,2 # 17
,6,2,2,4,6,6,6,2,6,4 # 18
,2,0,0,0,2,2,4,0,0,6 # 19
,6,4,2,0,0,0,0,2,0,4 # 20
,2,2,4])) ## 203 symbols
## ---- constellatios -----------------------------------------------------------
BPSK=np.array(zip(np.exp(2j*np.pi*np.arange(2)/2), [0,1]), common.CONST_DTYPE)
QPSK=np.array(zip(np.exp(2j*np.pi*np.arange(4)/4), [0,1,3,2]), common.CONST_DTYPE)
PSK8=np.array(zip(np.exp(2j*np.pi*np.arange(8)/8), [0,1,3,2,6,7,5,4]), common.CONST_DTYPE)
## ---- constellation indices ---------------------------------------------------
MODE_BPSK=0
MODE_QPSK=1
MODE_8PSK=2
## ---- physcal layer class -----------------------------------------------------
class PhysicalLayer(object):
"""Physical layer description for STANAG 4539 Appendix D"""
def __init__(self, sps):
"""intialization"""
self._sps = sps
self._frame_counter = -1
self._constellations = [BPSK, QPSK, PSK8]
self._preamble = self.get_preamble()
self._mode = {}
self._mode_description = 'UNKNOWN'
def get_constellations(self):
return self._constellations
def get_next_frame(self, symbols):
"""returns a tuple describing the frame:
[0] ... known+unknown symbols and scrambling
[1] ... modulation type after descrambling
[2] ... a boolean indicating if the processing should continue
[3] ... a boolean indicating if the soft decision for the unknown
symbols are saved"""
print('-------------------- get_frame --------------------',
self._frame_counter, len(symbols))
success = True
if self._frame_counter == -1: ## preamble mode
if len(symbols) == 0:
return [self._preamble,MODE_BPSK,success,False]
else:
success = self.decode_preamble(symbols)
return [self._preamble,MODE_BPSK,success,False]
# else: ## data mode
# self._frame_counter += 1
# ##print('test:', symbols[self._mode['unknown']:], np.mean(np.real(symbols[self._mode['unknown']:])))
# if self._mode['known'] == 0: ## orthogonal WALSH modulation
# success = True
# for i in range(5):
# a = symbols[32*i:32*(i+1)]
# success &= np.max(np.imag(np.mean(a.reshape(8,4),0))) < 0.25
# elif self._frame_counter < self._num_frames_per_block-2:
# success = np.mean(np.real(symbols[self._mode['unknown']:])) > 0.4 or np.max(np.imag(symbols[self._mode['unknown']:])) < 0.6
# if not success:
# print('aborting: ', symbols[self._mode['unknown']:])# np.mean(np.real(symbols[self._mode['unknown']:])),
# #np.max(np.imag(symbols[self._mode['unknown']:])))
# return [self.get_next_data_frame(success),self._mode['ci'],success,success]
def get_next_data_frame(self, success):
# if self._frame_counter == self._num_frames_per_block:
# self._frame_counter = 0
# scramble_for_frame = common.n_psk(8, np.array([self._scr_data.next()
# for _ in range(self._frame_len)]))
# a = common.make_scr(scramble_for_frame, scramble_for_frame)
# n_unknown = self._mode['unknown']
# a['symb'][0:n_unknown] = 0
# if self._mode['known'] != 0 and self._frame_counter >= self._num_frames_per_block-2:
# idx_d1d2 = self._frame_counter - self._num_frames_per_block + 2;
# a['symb'][n_unknown :n_unknown+ 8] *= common.n_psk(2, WALSH8[self._d1d2[idx_d1d2]][:])
# a['symb'][n_unknown+8:n_unknown+16] *= common.n_psk(2, WALSH8[self._d1d2[idx_d1d2]][:])
# if not success:
# self._frame_counter = -1
# self._pre_counter = -1
# return a
return False
def get_doppler(self, iq_samples):
"""quality check and doppler estimation for preamble"""
r = {'success': False, ## -- quality flag
'use_amp_est': False, ##self._frame_counter < 0,
'doppler': 0} ## -- doppler estimate (rad/symb)
if len(iq_samples) != 0:
sps = self._sps
## find starting point
_,zp = self.get_preamble_z()
cc = np.correlate(iq_samples, zp[0:40*sps])
imax = np.argmax(np.abs(cc[0:20*sps]))
print('imax=', imax, len(iq_samples), len(cc))
apk = np.abs(cc[imax])
tpk = np.abs(cc[imax+20*sps])
print('imax=', imax, 'apk=', apk, 'tpk=', tpk)
r['success'] = np.bool(apk > 2*tpk)
if r['success']:
idx = np.arange(40*sps)
pks = [np.vdot(zp[ i*40*sps+idx],
iq_samples[imax+i*40*sps+idx])
for i in range(4)]
r['doppler'] = common.freq_est(pks)/(40*sps)
print('success=', r['success'], 'doppler=', r['doppler'],
np.abs(np.array(pks)),
np.angle(np.array(pks)))
return r
def decode_preamble(self, symbols):
print('decode_preamble', symbols)
mean_symb = np.mean(symbols[-40:])
success = np.real(mean_symb) > 0.6
print('decode_preamble', mean_symb, success)
return success
# data = [FROM_WALSH8[np.packbits
# (np.real
# (np.sum
# (symbols[i:i+32].reshape((4,8)),0))<0)[0]]
# for i in range(0,15*32,32)]
# print('data=',data)
# self._pre_counter = sum([(x&3)*(1<<2*y) for (x,y) in zip(data[11:14][::-1], range(3))])
# self._d1d2 = data[9:11]
# print('MODE:', data[9:11])
# self._mode = mode = MODE[data[9]][data[10]]
# self._block_len = 11520 if mode['interleaver'][0] == 'L' else 1440
# self._frame_len = mode['known'] + mode['unknown']
# if mode['known'] == 0: ## orthogonal WALSH modulation
# self._num_frames_per_block = mode['interleaver'][1]*mode['interleaver'][2]/2*32/160
# else:
# self._num_frames_per_block = self._block_len/self._frame_len
# self._deinterleaver = Deinterleaver(mode['interleaver'][1], mode['interleaver'][2])
# self._depuncturer = common.Depuncturer(repeat=mode['repeat'])
# self._viterbi_decoder = viterbi27(0x6d, 0x4f)
# self._mode_description = 'MIL_STD_188-110A: (%d,%d) %dbps intl=%s [U=%d,K=%d]' % (data[9],data[10],
# mode['bit_rate'],
# mode['interleaver'][0],
# mode['unknown'], mode['known'])
# print(self._d1d2, mode, self._frame_len, self._mode_description)
def set_mode(self, _):
pass
def get_mode(self):
return self._mode_description
def decode_soft_dec(self, soft_dec):
print('decode_soft_dec', len(soft_dec), soft_dec.dtype)
if self._mode['known'] == 0: ## orthogonal WALSH modulation
n = len(soft_dec) // 32
soft_bits = np.zeros(2*n, dtype=np.float32)
for i in range(n):
w = np.sum(soft_dec[32*i:32*(i+1)].reshape(4,8),0)
b = FROM_WALSH4[np.packbits(w[0:4]>0)[0]]
print('WALSH', i, w, b)
abs_soft_dec = np.mean(np.abs(w))
soft_bits[2*i] = abs_soft_dec*(2*(b>>1)-1)
soft_bits[2*i+1] = abs_soft_dec*(2*(b &1)-1)
print('WALSH soft_bits=', soft_bits)
r = self._deinterleaver.load(soft_bits)
else:
r = self._deinterleaver.load(soft_dec)
print('decode_soft_dec r=', r.shape)
if r.shape[0] == 0:
return [],0.0
##print('deinterleaved bits: ', [x for x in 1*(r>0)])
rd = self._depuncturer.process(r)
self._viterbi_decoder.reset()
decoded_bits = self._viterbi_decoder.udpate(rd)
##print('bits=', decoded_bits)
quality = 100.0*self._viterbi_decoder.quality()/(2*len(decoded_bits))
print('quality={}%'.format(quality))
return decoded_bits,quality
@staticmethod
def get_preamble():
"""preamble symbols + scrambler"""
return common.make_scr(PREAMBLE,PREAMBLE)
def get_preamble_z(self):
"""preamble symbols for preamble correlation"""
a = PhysicalLayer.get_preamble()
return 1,np.array([z for z in a['symb']
for _ in range(self._sps)])
if __name__ == '__main__':
print(PREAMBLE)

View file

@ -6,14 +6,13 @@ import common
from digitalhf.digitalhf_swig import viterbi27
## 192 = 6*32
PREAMBLE=np.array([7,0,3,4,1,1,1,0,2,6,1,5,1,7,0,3,5,4,2,2,6,1,2,2,0,4,5,4,1,2,2,6,
7,0,7,0,1,1,5,4,2,6,5,1,1,7,4,7,5,4,6,6,6,1,6,6,0,4,1,0,1,2,6,2,
7,4,7,4,1,5,5,0,2,2,5,5,1,3,4,3,5,0,6,2,6,5,6,2,0,0,1,4,1,6,6,6,
7,0,3,4,5,5,5,4,2,6,1,5,5,3,4,7,5,4,2,2,2,5,6,6,0,4,5,4,5,6,6,2,
7,4,3,0,1,5,1,4,2,2,1,1,1,3,0,7,5,0,2,6,6,5,2,6,0,0,5,0,1,6,2,2,
7,4,3,0,5,1,5,0,2,2,1,1,5,7,4,3,5,0,2,6,2,1,6,2,0,0,5,0,5,2,6,6],
dtype=np.uint8)
## 192 = 6*32 0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0,1 # 32
PREAMBLE = common.n_psk(8, np.array([7,0,3,4,1,1,1,0,2,6,1,5,1,7,0,3,5,4,2,2,6,1,2,2,0,4,5,4,1,2,2,6, # 1
7,0,7,0,1,1,5,4,2,6,5,1,1,7,4,7,5,4,6,6,6,1,6,6,0,4,1,0,1,2,6,2, # 2
7,4,7,4,1,5,5,0,2,2,5,5,1,3,4,3,5,0,6,2,6,5,6,2,0,0,1,4,1,6,6,6, # 3
7,0,3,4,5,5,5,4,2,6,1,5,5,3,4,7,5,4,2,2,2,5,6,6,0,4,5,4,5,6,6,2, # 4
7,4,3,0,1,5,1,4,2,2,1,1,1,3,0,7,5,0,2,6,6,5,2,6,0,0,5,0,1,6,2,2, # 5
7,4,3,0,5,1,5,0,2,2,1,1,5,7,4,3,5,0,2,6,2,1,6,2,0,0,5,0,5,2,6,6])) # 6
## ---- data scrambler -----------------------------------------------------------
class ScrambleData(object):
@ -101,20 +100,23 @@ class PhysicalLayer(object):
[1] ... doppler estimate (rad/symbol) if available"""
print('-------------------- get_doppler --------------------',
self._frame_counter,len(iq_samples))
r = {'success': False, ## -- quality flag
'use_amp_est': False, ##self._frame_counter < 0,
'doppler': 0} ## -- doppler estimate (rad/symb)
sps = self._sps
_,zp = self.get_preamble_z()
wlen = 32
cc = np.correlate(iq_samples, zp)
cc = np.correlate(iq_samples, zp[0:wlen])
imax = np.argmax(np.abs(cc[0:wlen*sps]))
idx = np.arange(wlen*sps)
pks = [np.correlate(iq_samples[imax+i*wlen*sps+idx],
zp[i*wlen*sps+idx])[0]
pks = [np.vdot(zp[ i*wlen*sps+idx],
iq_samples[imax+i*wlen*sps+idx])
for i in range((len(iq_samples)-imax) // (wlen*sps))]
print('get_doppler pks: ', pks, np.angle(pks))
doppler = common.freq_est(pks)/(wlen*sps)
print('get_doppler doppler: ', doppler)
success = True
return success,0*doppler
r['doppler'] = common.freq_est(pks)/(wlen*sps)
print('get_doppler doppler: ', r['doppler'])
r['success'] = True
return r
def set_mode(self, mode):
pass
@ -125,14 +127,16 @@ class PhysicalLayer(object):
deintl_soft_dec = np.zeros(90, dtype=np.float64)
deintl_soft_dec[self._intl_idx] = soft_dec
print('decode_soft_dec', deintl_soft_dec)
decoded_bits = []
quality = 0.0
if self._frame_counter == 2:
self._viterbi_decoder.reset()
decoded_bits = self._viterbi_decoder.udpate(deintl_soft_dec)
print('bits=', decoded_bits)
print('quality={}% ({},{})'.format(100.0*self._viterbi_decoder.quality()/(2*len(decoded_bits)),
quality = 100.0*self._viterbi_decoder.quality()/(2*len(decoded_bits))
print('bits=', len(decoded_bits), decoded_bits)
print('quality={}% ({},{})'.format(quality,
self._viterbi_decoder.quality(),
len(decoded_bits)))
return decoded_bits
else:
depunct_deintl_soft_dec = np.zeros(90//3*4, dtype=np.float64)
depunct_deintl_soft_dec[0::4] = deintl_soft_dec[0::3]
@ -141,19 +145,20 @@ class PhysicalLayer(object):
depunct_deintl_soft_dec[3::4] = 0
self._viterbi_decoder2.reset()
decoded_bits = self._viterbi_decoder2.udpate(depunct_deintl_soft_dec)
print('bits=', decoded_bits)
print('quality={}% ({},{})'.format(100.0*4/3.5*self._viterbi_decoder2.quality()/(2*len(decoded_bits)),
quality = 100.0*4/3.5*self._viterbi_decoder2.quality()/(2*len(decoded_bits))
print('bits=', len(decoded_bits), decoded_bits)
print('quality={}% ({},{})'.format(quality,
self._viterbi_decoder2.quality(),
len(decoded_bits)))
return decoded_bits
if quality > 90:
return decoded_bits,quality
else:
return [],0.0
def get_preamble(self):
"""preamble symbols + scrambler"""
a = np.zeros(len(PREAMBLE), dtype=common.SYMB_SCRAMBLE_DTYPE)
a['symb'] = common.n_psk(8, PREAMBLE)
a['scramble'] = common.n_psk(8, PREAMBLE)
return a
return common.make_scr(PREAMBLE,PREAMBLE)
def get_preamble_z(self):
"""preamble symbols for preamble correlation"""