2018-10-25 16:01:24 +00:00
|
|
|
## -*- python -*-
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
from gnuradio import digital
|
|
|
|
|
|
|
|
class PhysicalLayer(object):
|
|
|
|
"""Physical layer description for STANAG 4285"""
|
|
|
|
|
|
|
|
def __init__(self, mode=0):
|
|
|
|
"""For STANAG 4258 the mode has to be set manually: mode=0 -> BPSK, mode=1 -> QPSK, mode=2 -> 8PSK"""
|
|
|
|
self._constellations = [PhysicalLayer.make_psk(2, [0,1]),
|
|
|
|
PhysicalLayer.make_psk(4, [0,1,3,2]),
|
|
|
|
PhysicalLayer.make_psk(8, [1,0,2,3,6,7,5,4])]
|
|
|
|
self._preamble = [PhysicalLayer.get_preamble(), 0] ## BPSK
|
|
|
|
self._data = [PhysicalLayer.get_data(), mode] ## according to the mode
|
|
|
|
self._counter = 0
|
2018-10-26 20:06:21 +00:00
|
|
|
self._preamble_phases = []
|
2018-10-25 16:01:24 +00:00
|
|
|
|
2018-10-26 20:06:21 +00:00
|
|
|
def set_mode(self, mode):
|
2018-10-25 16:01:24 +00:00
|
|
|
"""For STANAG 4258 the mode has to be set manually: mode=0 -> BPSK, mode=1 -> QPSK, mode=2 -> 8PSK"""
|
|
|
|
self._data[1] = mode
|
|
|
|
|
|
|
|
def get_constellations(self):
|
|
|
|
return self._constellations
|
|
|
|
|
|
|
|
def get_frame(self):
|
|
|
|
"""returns the known+unknown symbols and scrambling"""
|
2018-10-26 20:06:21 +00:00
|
|
|
print('-------------------- get_frame --------------------',self._counter)
|
2018-10-25 16:01:24 +00:00
|
|
|
if self._counter == 0:
|
2018-10-26 20:06:21 +00:00
|
|
|
x= self._preamble
|
2018-10-25 16:01:24 +00:00
|
|
|
else:
|
2018-10-26 20:06:21 +00:00
|
|
|
x=self._data
|
|
|
|
print('get_frame end\n')
|
|
|
|
return x;
|
2018-10-25 16:01:24 +00:00
|
|
|
|
2018-10-26 20:06:21 +00:00
|
|
|
def get_doppler(self, s):
|
2018-10-25 16:01:24 +00:00
|
|
|
"""used for doppler shift update, for determining which frame to provide next,
|
|
|
|
and for stopping at end of data/when the signal quality is too low"""
|
2018-10-26 20:06:21 +00:00
|
|
|
print('-------------------- get_doppler --------------------',self._counter)
|
|
|
|
doppler = 0
|
|
|
|
if self._counter == 0: ## preamble
|
2018-10-27 08:05:19 +00:00
|
|
|
doppler = PhysicalLayer.data_aided_frequency_estimation(s, self._preamble[0]['symb'])
|
2018-10-25 16:01:24 +00:00
|
|
|
self._counter = (self._counter+1)&1
|
2018-10-27 08:05:19 +00:00
|
|
|
return [True, 2*doppler]
|
2018-10-25 16:01:24 +00:00
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def get_preamble():
|
|
|
|
"""preamble symbols + scrambler(=1)"""
|
|
|
|
state = np.array([1,1,0,1,0], dtype=np.bool)
|
|
|
|
taps = np.array([0,0,1,0,1], dtype=np.bool)
|
|
|
|
p = np.zeros(80, dtype=np.uint8)
|
|
|
|
for i in range(80):
|
|
|
|
p[i] = state[-1]
|
|
|
|
state = np.concatenate(([np.sum(state&taps)&1], state[0:-1]))
|
|
|
|
a = np.zeros(80, dtype=[('symb',np.complex64), ('scramble', np.complex64)])
|
|
|
|
## BPSK modulation
|
|
|
|
constellation = PhysicalLayer.make_psk(2,range(2))['points']
|
|
|
|
a['symb'] = constellation[p,]
|
|
|
|
a['scramble'] = 1
|
|
|
|
return a
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def get_data():
|
|
|
|
"""data symbols + scrambler; for unknown symbols 'symb'=0"""
|
|
|
|
state = np.array([1,1,1,1,1,1,1,1,1], dtype=np.bool)
|
|
|
|
taps = np.array([0,0,0,0,1,0,0,0,1], dtype=np.bool)
|
|
|
|
p = np.zeros(176, dtype=np.uint8)
|
|
|
|
for i in range(176):
|
|
|
|
p[i] = np.sum(state[-3:]*[4,2,1])
|
|
|
|
for j in range(3):
|
|
|
|
state = np.concatenate(([np.sum(state&taps)&1], state[0:-1]))
|
|
|
|
a=np.zeros(176, dtype=[('symb',np.complex64), ('scramble', np.complex64)])
|
|
|
|
## PSK-8 modulation
|
|
|
|
constellation = PhysicalLayer.make_psk(8,range(8))['points']
|
|
|
|
a['scramble'] = constellation[p,]
|
2018-10-26 20:06:21 +00:00
|
|
|
a['symb'][ 32: 48] = a['scramble'][ 32: 48] ## mini-probe 1
|
|
|
|
a['symb'][ 80: 96] = a['scramble'][ 80: 96] ## mini-probe 2
|
|
|
|
a['symb'][128:144] = a['scramble'][128:144] ## mini-probe 3
|
2018-10-25 16:01:24 +00:00
|
|
|
return a
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def make_psk(n, gray_code):
|
|
|
|
c = np.zeros(n, dtype=[('points', np.complex64), ('symbols', np.uint8)])
|
|
|
|
c['points'] = np.exp(2*np.pi*1j*np.array(range(n))/n)
|
|
|
|
c['symbols'] = gray_code
|
|
|
|
return c
|
2018-10-27 08:05:19 +00:00
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def data_aided_frequency_estimation(x,c):
|
|
|
|
"""Data-Aided Frequency Estimation for Burst Digital Transmission,
|
|
|
|
Umberto Mengali and M. Morelli, IEEE TRANSACTIONS ON COMMUNICATIONS,
|
|
|
|
VOL. 45, NO. 1, JANUARY 1997"""
|
|
|
|
z = x*np.conj(c) ## eq (2)
|
|
|
|
L0 = len(z)
|
|
|
|
N = L0//2
|
|
|
|
R = np.zeros(N, dtype=np.complex64)
|
|
|
|
for i in range(N):
|
|
|
|
R[i] = 1.0/(L0-i)*np.sum(z[i:]*np.conj(z[0:L0-i])) ## eq (3)
|
|
|
|
m = np.array(range(N), dtype=np.float)
|
|
|
|
w = 3*((L0-m)*(L0-m+1)-N*(L0-N))/(N*(4*N*N - 6*N*L0 + 3*L0*L0-1)) ## eq (9)
|
|
|
|
mod_2pi = lambda x : np.mod(x-np.pi, 2*np.pi) - np.pi
|
|
|
|
fd = np.sum(w[1:] * mod_2pi(np.diff(np.angle(R)))) ## eq (8)
|
|
|
|
return fd
|