## -*- python -*- import numpy as np from gnuradio import digital class PhysicalLayer(object): """Physical layer description for STANAG 4285""" def __init__(self, mode=0): """For STANAG 4258 the mode has to be set manually: mode=0 -> BPSK, mode=1 -> QPSK, mode=2 -> 8PSK""" self._constellations = [PhysicalLayer.make_psk(2, [0,1]), PhysicalLayer.make_psk(4, [0,1,3,2]), PhysicalLayer.make_psk(8, [1,0,2,3,6,7,5,4])] self._preamble = [PhysicalLayer.get_preamble(), 0] ## BPSK self._data = [PhysicalLayer.get_data(), mode] ## according to the mode self._counter = 0 self._preamble_phases = [] def set_mode(self, mode): """For STANAG 4258 the mode has to be set manually: mode=0 -> BPSK, mode=1 -> QPSK, mode=2 -> 8PSK""" self._data[1] = mode def get_constellations(self): return self._constellations def get_frame(self): """returns the known+unknown symbols and scrambling""" print('-------------------- get_frame --------------------',self._counter) if self._counter == 0: x= self._preamble else: x=self._data print('get_frame end\n') return x; def get_doppler(self, s): """used for doppler shift update, for determining which frame to provide next, and for stopping at end of data/when the signal quality is too low""" print('-------------------- get_doppler --------------------',self._counter) doppler = 0 if self._counter == 0: ## preamble doppler = PhysicalLayer.data_aided_frequency_estimation(s, self._preamble[0]['symb']) self._counter = (self._counter+1)&1 return [True, 2*doppler] @staticmethod def get_preamble(): """preamble symbols + scrambler(=1)""" state = np.array([1,1,0,1,0], dtype=np.bool) taps = np.array([0,0,1,0,1], dtype=np.bool) p = np.zeros(80, dtype=np.uint8) for i in range(80): p[i] = state[-1] state = np.concatenate(([np.sum(state&taps)&1], state[0:-1])) a = np.zeros(80, dtype=[('symb',np.complex64), ('scramble', np.complex64)]) ## BPSK modulation constellation = PhysicalLayer.make_psk(2,range(2))['points'] a['symb'] = constellation[p,] a['scramble'] = 1 return a @staticmethod def get_data(): """data symbols + scrambler; for unknown symbols 'symb'=0""" state = np.array([1,1,1,1,1,1,1,1,1], dtype=np.bool) taps = np.array([0,0,0,0,1,0,0,0,1], dtype=np.bool) p = np.zeros(176, dtype=np.uint8) for i in range(176): p[i] = np.sum(state[-3:]*[4,2,1]) for j in range(3): state = np.concatenate(([np.sum(state&taps)&1], state[0:-1])) a=np.zeros(176, dtype=[('symb',np.complex64), ('scramble', np.complex64)]) ## PSK-8 modulation constellation = PhysicalLayer.make_psk(8,range(8))['points'] a['scramble'] = constellation[p,] a['symb'][ 32: 48] = a['scramble'][ 32: 48] ## mini-probe 1 a['symb'][ 80: 96] = a['scramble'][ 80: 96] ## mini-probe 2 a['symb'][128:144] = a['scramble'][128:144] ## mini-probe 3 return a @staticmethod def make_psk(n, gray_code): c = np.zeros(n, dtype=[('points', np.complex64), ('symbols', np.uint8)]) c['points'] = np.exp(2*np.pi*1j*np.array(range(n))/n) c['symbols'] = gray_code return c @staticmethod def data_aided_frequency_estimation(x,c): """Data-Aided Frequency Estimation for Burst Digital Transmission, Umberto Mengali and M. Morelli, IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 45, NO. 1, JANUARY 1997""" z = x*np.conj(c) ## eq (2) L0 = len(z) N = L0//2 R = np.zeros(N, dtype=np.complex64) for i in range(N): R[i] = 1.0/(L0-i)*np.sum(z[i:]*np.conj(z[0:L0-i])) ## eq (3) m = np.array(range(N), dtype=np.float) w = 3*((L0-m)*(L0-m+1)-N*(L0-N))/(N*(4*N*N - 6*N*L0 + 3*L0*L0-1)) ## eq (9) mod_2pi = lambda x : np.mod(x-np.pi, 2*np.pi) - np.pi fd = np.sum(w[1:] * mod_2pi(np.diff(np.angle(R)))) ## eq (8) return fd