1
0
Fork 0
mirror of https://git.rip/DMCA_FUCKER/re3.git synced 2024-12-23 20:20:02 +00:00
re3/sdk/dx8sdk/Include/d3dx9mesh.h
2020-08-02 19:36:50 +03:00

2537 lines
98 KiB
C

//////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) Microsoft Corporation. All Rights Reserved.
//
// File: d3dx9mesh.h
// Content: D3DX mesh types and functions
//
//////////////////////////////////////////////////////////////////////////////
#include "d3dx9.h"
#ifndef __D3DX9MESH_H__
#define __D3DX9MESH_H__
// {7ED943DD-52E8-40b5-A8D8-76685C406330}
DEFINE_GUID(IID_ID3DXBaseMesh,
0x7ed943dd, 0x52e8, 0x40b5, 0xa8, 0xd8, 0x76, 0x68, 0x5c, 0x40, 0x63, 0x30);
// {4020E5C2-1403-4929-883F-E2E849FAC195}
DEFINE_GUID(IID_ID3DXMesh,
0x4020e5c2, 0x1403, 0x4929, 0x88, 0x3f, 0xe2, 0xe8, 0x49, 0xfa, 0xc1, 0x95);
// {8875769A-D579-4088-AAEB-534D1AD84E96}
DEFINE_GUID(IID_ID3DXPMesh,
0x8875769a, 0xd579, 0x4088, 0xaa, 0xeb, 0x53, 0x4d, 0x1a, 0xd8, 0x4e, 0x96);
// {667EA4C7-F1CD-4386-B523-7C0290B83CC5}
DEFINE_GUID(IID_ID3DXSPMesh,
0x667ea4c7, 0xf1cd, 0x4386, 0xb5, 0x23, 0x7c, 0x2, 0x90, 0xb8, 0x3c, 0xc5);
// {11EAA540-F9A6-4d49-AE6A-E19221F70CC4}
DEFINE_GUID(IID_ID3DXSkinInfo,
0x11eaa540, 0xf9a6, 0x4d49, 0xae, 0x6a, 0xe1, 0x92, 0x21, 0xf7, 0xc, 0xc4);
// {3CE6CC22-DBF2-44f4-894D-F9C34A337139}
DEFINE_GUID(IID_ID3DXPatchMesh,
0x3ce6cc22, 0xdbf2, 0x44f4, 0x89, 0x4d, 0xf9, 0xc3, 0x4a, 0x33, 0x71, 0x39);
//patch mesh can be quads or tris
typedef enum _D3DXPATCHMESHTYPE {
D3DXPATCHMESH_RECT = 0x001,
D3DXPATCHMESH_TRI = 0x002,
D3DXPATCHMESH_NPATCH = 0x003,
D3DXPATCHMESH_FORCE_DWORD = 0x7fffffff, /* force 32-bit size enum */
} D3DXPATCHMESHTYPE;
// Mesh options - lower 3 bytes only, upper byte used by _D3DXMESHOPT option flags
enum _D3DXMESH {
D3DXMESH_32BIT = 0x001, // If set, then use 32 bit indices, if not set use 16 bit indices.
D3DXMESH_DONOTCLIP = 0x002, // Use D3DUSAGE_DONOTCLIP for VB & IB.
D3DXMESH_POINTS = 0x004, // Use D3DUSAGE_POINTS for VB & IB.
D3DXMESH_RTPATCHES = 0x008, // Use D3DUSAGE_RTPATCHES for VB & IB.
D3DXMESH_NPATCHES = 0x4000,// Use D3DUSAGE_NPATCHES for VB & IB.
D3DXMESH_VB_SYSTEMMEM = 0x010, // Use D3DPOOL_SYSTEMMEM for VB. Overrides D3DXMESH_MANAGEDVERTEXBUFFER
D3DXMESH_VB_MANAGED = 0x020, // Use D3DPOOL_MANAGED for VB.
D3DXMESH_VB_WRITEONLY = 0x040, // Use D3DUSAGE_WRITEONLY for VB.
D3DXMESH_VB_DYNAMIC = 0x080, // Use D3DUSAGE_DYNAMIC for VB.
D3DXMESH_VB_SOFTWAREPROCESSING = 0x8000, // Use D3DUSAGE_SOFTWAREPROCESSING for VB.
D3DXMESH_IB_SYSTEMMEM = 0x100, // Use D3DPOOL_SYSTEMMEM for IB. Overrides D3DXMESH_MANAGEDINDEXBUFFER
D3DXMESH_IB_MANAGED = 0x200, // Use D3DPOOL_MANAGED for IB.
D3DXMESH_IB_WRITEONLY = 0x400, // Use D3DUSAGE_WRITEONLY for IB.
D3DXMESH_IB_DYNAMIC = 0x800, // Use D3DUSAGE_DYNAMIC for IB.
D3DXMESH_IB_SOFTWAREPROCESSING= 0x10000, // Use D3DUSAGE_SOFTWAREPROCESSING for IB.
D3DXMESH_VB_SHARE = 0x1000, // Valid for Clone* calls only, forces cloned mesh/pmesh to share vertex buffer
D3DXMESH_USEHWONLY = 0x2000, // Valid for ID3DXSkinInfo::ConvertToBlendedMesh
// Helper options
D3DXMESH_SYSTEMMEM = 0x110, // D3DXMESH_VB_SYSTEMMEM | D3DXMESH_IB_SYSTEMMEM
D3DXMESH_MANAGED = 0x220, // D3DXMESH_VB_MANAGED | D3DXMESH_IB_MANAGED
D3DXMESH_WRITEONLY = 0x440, // D3DXMESH_VB_WRITEONLY | D3DXMESH_IB_WRITEONLY
D3DXMESH_DYNAMIC = 0x880, // D3DXMESH_VB_DYNAMIC | D3DXMESH_IB_DYNAMIC
D3DXMESH_SOFTWAREPROCESSING = 0x18000, // D3DXMESH_VB_SOFTWAREPROCESSING | D3DXMESH_IB_SOFTWAREPROCESSING
};
//patch mesh options
enum _D3DXPATCHMESH {
D3DXPATCHMESH_DEFAULT = 000,
};
// option field values for specifying min value in D3DXGeneratePMesh and D3DXSimplifyMesh
enum _D3DXMESHSIMP
{
D3DXMESHSIMP_VERTEX = 0x1,
D3DXMESHSIMP_FACE = 0x2,
};
typedef enum _D3DXCLEANTYPE {
D3DXCLEAN_BACKFACING = 0x00000001,
D3DXCLEAN_BOWTIES = 0x00000002,
// Helper options
D3DXCLEAN_SKINNING = D3DXCLEAN_BACKFACING, // Bowtie cleaning modifies geometry and breaks skinning
D3DXCLEAN_OPTIMIZATION = D3DXCLEAN_BACKFACING,
D3DXCLEAN_SIMPLIFICATION= D3DXCLEAN_BACKFACING | D3DXCLEAN_BOWTIES,
} D3DXCLEANTYPE;
enum _MAX_FVF_DECL_SIZE
{
MAX_FVF_DECL_SIZE = MAXD3DDECLLENGTH + 1 // +1 for END
};
typedef struct ID3DXBaseMesh *LPD3DXBASEMESH;
typedef struct ID3DXMesh *LPD3DXMESH;
typedef struct ID3DXPMesh *LPD3DXPMESH;
typedef struct ID3DXSPMesh *LPD3DXSPMESH;
typedef struct ID3DXSkinInfo *LPD3DXSKININFO;
typedef struct ID3DXPatchMesh *LPD3DXPATCHMESH;
typedef struct _D3DXATTRIBUTERANGE
{
DWORD AttribId;
DWORD FaceStart;
DWORD FaceCount;
DWORD VertexStart;
DWORD VertexCount;
} D3DXATTRIBUTERANGE;
typedef D3DXATTRIBUTERANGE* LPD3DXATTRIBUTERANGE;
typedef struct _D3DXMATERIAL
{
D3DMATERIAL9 MatD3D;
LPSTR pTextureFilename;
} D3DXMATERIAL;
typedef D3DXMATERIAL *LPD3DXMATERIAL;
typedef enum _D3DXEFFECTDEFAULTTYPE
{
D3DXEDT_STRING = 0x1, // pValue points to a null terminated ASCII string
D3DXEDT_FLOATS = 0x2, // pValue points to an array of floats - number of floats is NumBytes / sizeof(float)
D3DXEDT_DWORD = 0x3, // pValue points to a DWORD
D3DXEDT_FORCEDWORD = 0x7fffffff
} D3DXEFFECTDEFAULTTYPE;
typedef struct _D3DXEFFECTDEFAULT
{
LPSTR pParamName;
D3DXEFFECTDEFAULTTYPE Type; // type of the data pointed to by pValue
DWORD NumBytes; // size in bytes of the data pointed to by pValue
LPVOID pValue; // data for the default of the effect
} D3DXEFFECTDEFAULT, *LPD3DXEFFECTDEFAULT;
typedef struct _D3DXEFFECTINSTANCE
{
LPSTR pEffectFilename;
DWORD NumDefaults;
LPD3DXEFFECTDEFAULT pDefaults;
} D3DXEFFECTINSTANCE, *LPD3DXEFFECTINSTANCE;
typedef struct _D3DXATTRIBUTEWEIGHTS
{
FLOAT Position;
FLOAT Boundary;
FLOAT Normal;
FLOAT Diffuse;
FLOAT Specular;
FLOAT Texcoord[8];
FLOAT Tangent;
FLOAT Binormal;
} D3DXATTRIBUTEWEIGHTS, *LPD3DXATTRIBUTEWEIGHTS;
enum _D3DXWELDEPSILONSFLAGS
{
D3DXWELDEPSILONS_WELDALL = 0x1, // weld all vertices marked by adjacency as being overlapping
D3DXWELDEPSILONS_WELDPARTIALMATCHES = 0x2, // if a given vertex component is within epsilon, modify partial matched
// vertices so that both components identical AND if all components "equal"
// remove one of the vertices
D3DXWELDEPSILONS_DONOTREMOVEVERTICES = 0x4, // instructs weld to only allow modifications to vertices and not removal
// ONLY valid if D3DXWELDEPSILONS_WELDPARTIALMATCHES is set
// useful to modify vertices to be equal, but not allow vertices to be removed
D3DXWELDEPSILONS_DONOTSPLIT = 0x8, // instructs weld to specify the D3DXMESHOPT_DONOTSPLIT flag when doing an Optimize(ATTR_SORT)
// if this flag is not set, all vertices that are in separate attribute groups
// will remain split and not welded. Setting this flag can slow down software vertex processing
};
typedef struct _D3DXWELDEPSILONS
{
FLOAT Position; // NOTE: This does NOT replace the epsilon in GenerateAdjacency
// in general, it should be the same value or greater than the one passed to GeneratedAdjacency
FLOAT BlendWeights;
FLOAT Normal;
FLOAT PSize;
FLOAT Specular;
FLOAT Diffuse;
FLOAT Texcoord[8];
FLOAT Tangent;
FLOAT Binormal;
FLOAT TessFactor;
} D3DXWELDEPSILONS;
typedef D3DXWELDEPSILONS* LPD3DXWELDEPSILONS;
#undef INTERFACE
#define INTERFACE ID3DXBaseMesh
DECLARE_INTERFACE_(ID3DXBaseMesh, IUnknown)
{
// IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE;
STDMETHOD_(ULONG, AddRef)(THIS) PURE;
STDMETHOD_(ULONG, Release)(THIS) PURE;
// ID3DXBaseMesh
STDMETHOD(DrawSubset)(THIS_ DWORD AttribId) PURE;
STDMETHOD_(DWORD, GetNumFaces)(THIS) PURE;
STDMETHOD_(DWORD, GetNumVertices)(THIS) PURE;
STDMETHOD_(DWORD, GetFVF)(THIS) PURE;
STDMETHOD(GetDeclaration)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE;
STDMETHOD_(DWORD, GetNumBytesPerVertex)(THIS) PURE;
STDMETHOD_(DWORD, GetOptions)(THIS) PURE;
STDMETHOD(GetDevice)(THIS_ LPDIRECT3DDEVICE9* ppDevice) PURE;
STDMETHOD(CloneMeshFVF)(THIS_ DWORD Options,
DWORD FVF, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH* ppCloneMesh) PURE;
STDMETHOD(CloneMesh)(THIS_ DWORD Options,
CONST D3DVERTEXELEMENT9 *pDeclaration, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH* ppCloneMesh) PURE;
STDMETHOD(GetVertexBuffer)(THIS_ LPDIRECT3DVERTEXBUFFER9* ppVB) PURE;
STDMETHOD(GetIndexBuffer)(THIS_ LPDIRECT3DINDEXBUFFER9* ppIB) PURE;
STDMETHOD(LockVertexBuffer)(THIS_ DWORD Flags, LPVOID *ppData) PURE;
STDMETHOD(UnlockVertexBuffer)(THIS) PURE;
STDMETHOD(LockIndexBuffer)(THIS_ DWORD Flags, LPVOID *ppData) PURE;
STDMETHOD(UnlockIndexBuffer)(THIS) PURE;
STDMETHOD(GetAttributeTable)(
THIS_ D3DXATTRIBUTERANGE *pAttribTable, DWORD* pAttribTableSize) PURE;
STDMETHOD(ConvertPointRepsToAdjacency)(THIS_ CONST DWORD* pPRep, DWORD* pAdjacency) PURE;
STDMETHOD(ConvertAdjacencyToPointReps)(THIS_ CONST DWORD* pAdjacency, DWORD* pPRep) PURE;
STDMETHOD(GenerateAdjacency)(THIS_ FLOAT Epsilon, DWORD* pAdjacency) PURE;
STDMETHOD(UpdateSemantics)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE;
};
#undef INTERFACE
#define INTERFACE ID3DXMesh
DECLARE_INTERFACE_(ID3DXMesh, ID3DXBaseMesh)
{
// IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE;
STDMETHOD_(ULONG, AddRef)(THIS) PURE;
STDMETHOD_(ULONG, Release)(THIS) PURE;
// ID3DXBaseMesh
STDMETHOD(DrawSubset)(THIS_ DWORD AttribId) PURE;
STDMETHOD_(DWORD, GetNumFaces)(THIS) PURE;
STDMETHOD_(DWORD, GetNumVertices)(THIS) PURE;
STDMETHOD_(DWORD, GetFVF)(THIS) PURE;
STDMETHOD(GetDeclaration)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE;
STDMETHOD_(DWORD, GetNumBytesPerVertex)(THIS) PURE;
STDMETHOD_(DWORD, GetOptions)(THIS) PURE;
STDMETHOD(GetDevice)(THIS_ LPDIRECT3DDEVICE9* ppDevice) PURE;
STDMETHOD(CloneMeshFVF)(THIS_ DWORD Options,
DWORD FVF, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH* ppCloneMesh) PURE;
STDMETHOD(CloneMesh)(THIS_ DWORD Options,
CONST D3DVERTEXELEMENT9 *pDeclaration, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH* ppCloneMesh) PURE;
STDMETHOD(GetVertexBuffer)(THIS_ LPDIRECT3DVERTEXBUFFER9* ppVB) PURE;
STDMETHOD(GetIndexBuffer)(THIS_ LPDIRECT3DINDEXBUFFER9* ppIB) PURE;
STDMETHOD(LockVertexBuffer)(THIS_ DWORD Flags, LPVOID *ppData) PURE;
STDMETHOD(UnlockVertexBuffer)(THIS) PURE;
STDMETHOD(LockIndexBuffer)(THIS_ DWORD Flags, LPVOID *ppData) PURE;
STDMETHOD(UnlockIndexBuffer)(THIS) PURE;
STDMETHOD(GetAttributeTable)(
THIS_ D3DXATTRIBUTERANGE *pAttribTable, DWORD* pAttribTableSize) PURE;
STDMETHOD(ConvertPointRepsToAdjacency)(THIS_ CONST DWORD* pPRep, DWORD* pAdjacency) PURE;
STDMETHOD(ConvertAdjacencyToPointReps)(THIS_ CONST DWORD* pAdjacency, DWORD* pPRep) PURE;
STDMETHOD(GenerateAdjacency)(THIS_ FLOAT Epsilon, DWORD* pAdjacency) PURE;
STDMETHOD(UpdateSemantics)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE;
// ID3DXMesh
STDMETHOD(LockAttributeBuffer)(THIS_ DWORD Flags, DWORD** ppData) PURE;
STDMETHOD(UnlockAttributeBuffer)(THIS) PURE;
STDMETHOD(Optimize)(THIS_ DWORD Flags, CONST DWORD* pAdjacencyIn, DWORD* pAdjacencyOut,
DWORD* pFaceRemap, LPD3DXBUFFER *ppVertexRemap,
LPD3DXMESH* ppOptMesh) PURE;
STDMETHOD(OptimizeInplace)(THIS_ DWORD Flags, CONST DWORD* pAdjacencyIn, DWORD* pAdjacencyOut,
DWORD* pFaceRemap, LPD3DXBUFFER *ppVertexRemap) PURE;
STDMETHOD(SetAttributeTable)(THIS_ CONST D3DXATTRIBUTERANGE *pAttribTable, DWORD cAttribTableSize) PURE;
};
#undef INTERFACE
#define INTERFACE ID3DXPMesh
DECLARE_INTERFACE_(ID3DXPMesh, ID3DXBaseMesh)
{
// IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE;
STDMETHOD_(ULONG, AddRef)(THIS) PURE;
STDMETHOD_(ULONG, Release)(THIS) PURE;
// ID3DXBaseMesh
STDMETHOD(DrawSubset)(THIS_ DWORD AttribId) PURE;
STDMETHOD_(DWORD, GetNumFaces)(THIS) PURE;
STDMETHOD_(DWORD, GetNumVertices)(THIS) PURE;
STDMETHOD_(DWORD, GetFVF)(THIS) PURE;
STDMETHOD(GetDeclaration)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE;
STDMETHOD_(DWORD, GetNumBytesPerVertex)(THIS) PURE;
STDMETHOD_(DWORD, GetOptions)(THIS) PURE;
STDMETHOD(GetDevice)(THIS_ LPDIRECT3DDEVICE9* ppDevice) PURE;
STDMETHOD(CloneMeshFVF)(THIS_ DWORD Options,
DWORD FVF, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH* ppCloneMesh) PURE;
STDMETHOD(CloneMesh)(THIS_ DWORD Options,
CONST D3DVERTEXELEMENT9 *pDeclaration, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH* ppCloneMesh) PURE;
STDMETHOD(GetVertexBuffer)(THIS_ LPDIRECT3DVERTEXBUFFER9* ppVB) PURE;
STDMETHOD(GetIndexBuffer)(THIS_ LPDIRECT3DINDEXBUFFER9* ppIB) PURE;
STDMETHOD(LockVertexBuffer)(THIS_ DWORD Flags, LPVOID *ppData) PURE;
STDMETHOD(UnlockVertexBuffer)(THIS) PURE;
STDMETHOD(LockIndexBuffer)(THIS_ DWORD Flags, LPVOID *ppData) PURE;
STDMETHOD(UnlockIndexBuffer)(THIS) PURE;
STDMETHOD(GetAttributeTable)(
THIS_ D3DXATTRIBUTERANGE *pAttribTable, DWORD* pAttribTableSize) PURE;
STDMETHOD(ConvertPointRepsToAdjacency)(THIS_ CONST DWORD* pPRep, DWORD* pAdjacency) PURE;
STDMETHOD(ConvertAdjacencyToPointReps)(THIS_ CONST DWORD* pAdjacency, DWORD* pPRep) PURE;
STDMETHOD(GenerateAdjacency)(THIS_ FLOAT Epsilon, DWORD* pAdjacency) PURE;
STDMETHOD(UpdateSemantics)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE;
// ID3DXPMesh
STDMETHOD(ClonePMeshFVF)(THIS_ DWORD Options,
DWORD FVF, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXPMESH* ppCloneMesh) PURE;
STDMETHOD(ClonePMesh)(THIS_ DWORD Options,
CONST D3DVERTEXELEMENT9 *pDeclaration, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXPMESH* ppCloneMesh) PURE;
STDMETHOD(SetNumFaces)(THIS_ DWORD Faces) PURE;
STDMETHOD(SetNumVertices)(THIS_ DWORD Vertices) PURE;
STDMETHOD_(DWORD, GetMaxFaces)(THIS) PURE;
STDMETHOD_(DWORD, GetMinFaces)(THIS) PURE;
STDMETHOD_(DWORD, GetMaxVertices)(THIS) PURE;
STDMETHOD_(DWORD, GetMinVertices)(THIS) PURE;
STDMETHOD(Save)(THIS_ IStream *pStream, CONST D3DXMATERIAL* pMaterials, CONST D3DXEFFECTINSTANCE* pEffectInstances, DWORD NumMaterials) PURE;
STDMETHOD(Optimize)(THIS_ DWORD Flags, DWORD* pAdjacencyOut,
DWORD* pFaceRemap, LPD3DXBUFFER *ppVertexRemap,
LPD3DXMESH* ppOptMesh) PURE;
STDMETHOD(OptimizeBaseLOD)(THIS_ DWORD Flags, DWORD* pFaceRemap) PURE;
STDMETHOD(TrimByFaces)(THIS_ DWORD NewFacesMin, DWORD NewFacesMax, DWORD *rgiFaceRemap, DWORD *rgiVertRemap) PURE;
STDMETHOD(TrimByVertices)(THIS_ DWORD NewVerticesMin, DWORD NewVerticesMax, DWORD *rgiFaceRemap, DWORD *rgiVertRemap) PURE;
STDMETHOD(GetAdjacency)(THIS_ DWORD* pAdjacency) PURE;
// Used to generate the immediate "ancestor" for each vertex when it is removed by a vsplit. Allows generation of geomorphs
// Vertex buffer must be equal to or greater than the maximum number of vertices in the pmesh
STDMETHOD(GenerateVertexHistory)(THIS_ DWORD* pVertexHistory) PURE;
};
#undef INTERFACE
#define INTERFACE ID3DXSPMesh
DECLARE_INTERFACE_(ID3DXSPMesh, IUnknown)
{
// IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE;
STDMETHOD_(ULONG, AddRef)(THIS) PURE;
STDMETHOD_(ULONG, Release)(THIS) PURE;
// ID3DXSPMesh
STDMETHOD_(DWORD, GetNumFaces)(THIS) PURE;
STDMETHOD_(DWORD, GetNumVertices)(THIS) PURE;
STDMETHOD_(DWORD, GetFVF)(THIS) PURE;
STDMETHOD(GetDeclaration)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE;
STDMETHOD_(DWORD, GetOptions)(THIS) PURE;
STDMETHOD(GetDevice)(THIS_ LPDIRECT3DDEVICE9* ppDevice) PURE;
STDMETHOD(CloneMeshFVF)(THIS_ DWORD Options,
DWORD FVF, LPDIRECT3DDEVICE9 pD3DDevice, DWORD *pAdjacencyOut, DWORD *pVertexRemapOut, LPD3DXMESH* ppCloneMesh) PURE;
STDMETHOD(CloneMesh)(THIS_ DWORD Options,
CONST D3DVERTEXELEMENT9 *pDeclaration, LPDIRECT3DDEVICE9 pD3DDevice, DWORD *pAdjacencyOut, DWORD *pVertexRemapOut, LPD3DXMESH* ppCloneMesh) PURE;
STDMETHOD(ClonePMeshFVF)(THIS_ DWORD Options,
DWORD FVF, LPDIRECT3DDEVICE9 pD3DDevice, DWORD *pVertexRemapOut, FLOAT *pErrorsByFace, LPD3DXPMESH* ppCloneMesh) PURE;
STDMETHOD(ClonePMesh)(THIS_ DWORD Options,
CONST D3DVERTEXELEMENT9 *pDeclaration, LPDIRECT3DDEVICE9 pD3DDevice, DWORD *pVertexRemapOut, FLOAT *pErrorsbyFace, LPD3DXPMESH* ppCloneMesh) PURE;
STDMETHOD(ReduceFaces)(THIS_ DWORD Faces) PURE;
STDMETHOD(ReduceVertices)(THIS_ DWORD Vertices) PURE;
STDMETHOD_(DWORD, GetMaxFaces)(THIS) PURE;
STDMETHOD_(DWORD, GetMaxVertices)(THIS) PURE;
STDMETHOD(GetVertexAttributeWeights)(THIS_ LPD3DXATTRIBUTEWEIGHTS pVertexAttributeWeights) PURE;
STDMETHOD(GetVertexWeights)(THIS_ FLOAT *pVertexWeights) PURE;
};
#define UNUSED16 (0xffff)
#define UNUSED32 (0xffffffff)
// ID3DXMesh::Optimize options - upper byte only, lower 3 bytes used from _D3DXMESH option flags
enum _D3DXMESHOPT {
D3DXMESHOPT_COMPACT = 0x01000000,
D3DXMESHOPT_ATTRSORT = 0x02000000,
D3DXMESHOPT_VERTEXCACHE = 0x04000000,
D3DXMESHOPT_STRIPREORDER = 0x08000000,
D3DXMESHOPT_IGNOREVERTS = 0x10000000, // optimize faces only, don't touch vertices
D3DXMESHOPT_DONOTSPLIT = 0x20000000, // do not split vertices shared between attribute groups when attribute sorting
D3DXMESHOPT_DEVICEINDEPENDENT = 0x00400000, // Only affects VCache. uses a static known good cache size for all cards
// D3DXMESHOPT_SHAREVB has been removed, please use D3DXMESH_VB_SHARE instead
};
// Subset of the mesh that has the same attribute and bone combination.
// This subset can be rendered in a single draw call
typedef struct _D3DXBONECOMBINATION
{
DWORD AttribId;
DWORD FaceStart;
DWORD FaceCount;
DWORD VertexStart;
DWORD VertexCount;
DWORD* BoneId;
} D3DXBONECOMBINATION, *LPD3DXBONECOMBINATION;
// The following types of patch combinations are supported:
// Patch type Basis Degree
// Rect Bezier 2,3,5
// Rect B-Spline 2,3,5
// Rect Catmull-Rom 3
// Tri Bezier 2,3,5
// N-Patch N/A 3
typedef struct _D3DXPATCHINFO
{
D3DXPATCHMESHTYPE PatchType;
D3DDEGREETYPE Degree;
D3DBASISTYPE Basis;
} D3DXPATCHINFO, *LPD3DXPATCHINFO;
#undef INTERFACE
#define INTERFACE ID3DXPatchMesh
DECLARE_INTERFACE_(ID3DXPatchMesh, IUnknown)
{
// IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE;
STDMETHOD_(ULONG, AddRef)(THIS) PURE;
STDMETHOD_(ULONG, Release)(THIS) PURE;
// ID3DXPatchMesh
// Return creation parameters
STDMETHOD_(DWORD, GetNumPatches)(THIS) PURE;
STDMETHOD_(DWORD, GetNumVertices)(THIS) PURE;
STDMETHOD(GetDeclaration)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE;
STDMETHOD_(DWORD, GetControlVerticesPerPatch)(THIS) PURE;
STDMETHOD_(DWORD, GetOptions)(THIS) PURE;
STDMETHOD(GetDevice)(THIS_ LPDIRECT3DDEVICE9 *ppDevice) PURE;
STDMETHOD(GetPatchInfo)(THIS_ LPD3DXPATCHINFO PatchInfo) PURE;
// Control mesh access
STDMETHOD(GetVertexBuffer)(THIS_ LPDIRECT3DVERTEXBUFFER9* ppVB) PURE;
STDMETHOD(GetIndexBuffer)(THIS_ LPDIRECT3DINDEXBUFFER9* ppIB) PURE;
STDMETHOD(LockVertexBuffer)(THIS_ DWORD flags, LPVOID *ppData) PURE;
STDMETHOD(UnlockVertexBuffer)(THIS) PURE;
STDMETHOD(LockIndexBuffer)(THIS_ DWORD flags, LPVOID *ppData) PURE;
STDMETHOD(UnlockIndexBuffer)(THIS) PURE;
STDMETHOD(LockAttributeBuffer)(THIS_ DWORD flags, DWORD** ppData) PURE;
STDMETHOD(UnlockAttributeBuffer)(THIS) PURE;
// This function returns the size of the tessellated mesh given a tessellation level.
// This assumes uniform tessellation. For adaptive tessellation the Adaptive parameter must
// be set to TRUE and TessellationLevel should be the max tessellation.
// This will result in the max mesh size necessary for adaptive tessellation.
STDMETHOD(GetTessSize)(THIS_ FLOAT fTessLevel,DWORD Adaptive, DWORD *NumTriangles,DWORD *NumVertices) PURE;
//GenerateAdjacency determines which patches are adjacent with provided tolerance
//this information is used internally to optimize tessellation
STDMETHOD(GenerateAdjacency)(THIS_ FLOAT Tolerance) PURE;
//CloneMesh Creates a new patchmesh with the specified decl, and converts the vertex buffer
//to the new decl. Entries in the new decl which are new are set to 0. If the current mesh
//has adjacency, the new mesh will also have adjacency
STDMETHOD(CloneMesh)(THIS_ DWORD Options, CONST D3DVERTEXELEMENT9 *pDecl, LPD3DXPATCHMESH *pMesh) PURE;
// Optimizes the patchmesh for efficient tessellation. This function is designed
// to perform one time optimization for patch meshes that need to be tessellated
// repeatedly by calling the Tessellate() method. The optimization performed is
// independent of the actual tessellation level used.
// Currently Flags is unused.
// If vertices are changed, Optimize must be called again
STDMETHOD(Optimize)(THIS_ DWORD flags) PURE;
//gets and sets displacement parameters
//displacement maps can only be 2D textures MIP-MAPPING is ignored for non adapative tessellation
STDMETHOD(SetDisplaceParam)(THIS_ LPDIRECT3DBASETEXTURE9 Texture,
D3DTEXTUREFILTERTYPE MinFilter,
D3DTEXTUREFILTERTYPE MagFilter,
D3DTEXTUREFILTERTYPE MipFilter,
D3DTEXTUREADDRESS Wrap,
DWORD dwLODBias) PURE;
STDMETHOD(GetDisplaceParam)(THIS_ LPDIRECT3DBASETEXTURE9 *Texture,
D3DTEXTUREFILTERTYPE *MinFilter,
D3DTEXTUREFILTERTYPE *MagFilter,
D3DTEXTUREFILTERTYPE *MipFilter,
D3DTEXTUREADDRESS *Wrap,
DWORD *dwLODBias) PURE;
// Performs the uniform tessellation based on the tessellation level.
// This function will perform more efficiently if the patch mesh has been optimized using the Optimize() call.
STDMETHOD(Tessellate)(THIS_ FLOAT fTessLevel,LPD3DXMESH pMesh) PURE;
// Performs adaptive tessellation based on the Z based adaptive tessellation criterion.
// pTrans specifies a 4D vector that is dotted with the vertices to get the per vertex
// adaptive tessellation amount. Each edge is tessellated to the average of the criterion
// at the 2 vertices it connects.
// MaxTessLevel specifies the upper limit for adaptive tesselation.
// This function will perform more efficiently if the patch mesh has been optimized using the Optimize() call.
STDMETHOD(TessellateAdaptive)(THIS_
CONST D3DXVECTOR4 *pTrans,
DWORD dwMaxTessLevel,
DWORD dwMinTessLevel,
LPD3DXMESH pMesh) PURE;
};
#undef INTERFACE
#define INTERFACE ID3DXSkinInfo
DECLARE_INTERFACE_(ID3DXSkinInfo, IUnknown)
{
// IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE;
STDMETHOD_(ULONG, AddRef)(THIS) PURE;
STDMETHOD_(ULONG, Release)(THIS) PURE;
// Specify the which vertices do each bones influence and by how much
STDMETHOD(SetBoneInfluence)(THIS_ DWORD bone, DWORD numInfluences, CONST DWORD* vertices, CONST FLOAT* weights) PURE;
STDMETHOD(SetBoneVertexInfluence)(THIS_ DWORD boneNum, DWORD influenceNum, float weight) PURE;
STDMETHOD_(DWORD, GetNumBoneInfluences)(THIS_ DWORD bone) PURE;
STDMETHOD(GetBoneInfluence)(THIS_ DWORD bone, DWORD* vertices, FLOAT* weights) PURE;
STDMETHOD(GetBoneVertexInfluence)(THIS_ DWORD boneNum, DWORD influenceNum, float *pWeight, DWORD *pVertexNum) PURE;
STDMETHOD(GetMaxVertexInfluences)(THIS_ DWORD* maxVertexInfluences) PURE;
STDMETHOD_(DWORD, GetNumBones)(THIS) PURE;
STDMETHOD(FindBoneVertexInfluenceIndex)(THIS_ DWORD boneNum, DWORD vertexNum, DWORD *pInfluenceIndex) PURE;
// This gets the max face influences based on a triangle mesh with the specified index buffer
STDMETHOD(GetMaxFaceInfluences)(THIS_ LPDIRECT3DINDEXBUFFER9 pIB, DWORD NumFaces, DWORD* maxFaceInfluences) PURE;
// Set min bone influence. Bone influences that are smaller than this are ignored
STDMETHOD(SetMinBoneInfluence)(THIS_ FLOAT MinInfl) PURE;
// Get min bone influence.
STDMETHOD_(FLOAT, GetMinBoneInfluence)(THIS) PURE;
// Bone names are returned by D3DXLoadSkinMeshFromXof. They are not used by any other method of this object
STDMETHOD(SetBoneName)(THIS_ DWORD Bone, LPCSTR pName) PURE; // pName is copied to an internal string buffer
STDMETHOD_(LPCSTR, GetBoneName)(THIS_ DWORD Bone) PURE; // A pointer to an internal string buffer is returned. Do not free this.
// Bone offset matrices are returned by D3DXLoadSkinMeshFromXof. They are not used by any other method of this object
STDMETHOD(SetBoneOffsetMatrix)(THIS_ DWORD Bone, CONST D3DXMATRIX *pBoneTransform) PURE; // pBoneTransform is copied to an internal buffer
STDMETHOD_(LPD3DXMATRIX, GetBoneOffsetMatrix)(THIS_ DWORD Bone) PURE; // A pointer to an internal matrix is returned. Do not free this.
// Clone a skin info object
STDMETHOD(Clone)(THIS_ LPD3DXSKININFO* ppSkinInfo) PURE;
// Update bone influence information to match vertices after they are reordered. This should be called
// if the target vertex buffer has been reordered externally.
STDMETHOD(Remap)(THIS_ DWORD NumVertices, DWORD* pVertexRemap) PURE;
// These methods enable the modification of the vertex layout of the vertices that will be skinned
STDMETHOD(SetFVF)(THIS_ DWORD FVF) PURE;
STDMETHOD(SetDeclaration)(THIS_ CONST D3DVERTEXELEMENT9 *pDeclaration) PURE;
STDMETHOD_(DWORD, GetFVF)(THIS) PURE;
STDMETHOD(GetDeclaration)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE;
// Apply SW skinning based on current pose matrices to the target vertices.
STDMETHOD(UpdateSkinnedMesh)(THIS_
CONST D3DXMATRIX* pBoneTransforms,
CONST D3DXMATRIX* pBoneInvTransposeTransforms,
LPCVOID pVerticesSrc,
PVOID pVerticesDst) PURE;
// Takes a mesh and returns a new mesh with per vertex blend weights and a bone combination
// table that describes which bones affect which subsets of the mesh
STDMETHOD(ConvertToBlendedMesh)(THIS_
LPD3DXMESH pMesh,
DWORD Options,
CONST DWORD *pAdjacencyIn,
LPDWORD pAdjacencyOut,
DWORD* pFaceRemap,
LPD3DXBUFFER *ppVertexRemap,
DWORD* pMaxFaceInfl,
DWORD* pNumBoneCombinations,
LPD3DXBUFFER* ppBoneCombinationTable,
LPD3DXMESH* ppMesh) PURE;
// Takes a mesh and returns a new mesh with per vertex blend weights and indices
// and a bone combination table that describes which bones palettes affect which subsets of the mesh
STDMETHOD(ConvertToIndexedBlendedMesh)(THIS_
LPD3DXMESH pMesh,
DWORD Options,
DWORD paletteSize,
CONST DWORD *pAdjacencyIn,
LPDWORD pAdjacencyOut,
DWORD* pFaceRemap,
LPD3DXBUFFER *ppVertexRemap,
DWORD* pMaxVertexInfl,
DWORD* pNumBoneCombinations,
LPD3DXBUFFER* ppBoneCombinationTable,
LPD3DXMESH* ppMesh) PURE;
};
#ifdef __cplusplus
extern "C" {
#endif //__cplusplus
HRESULT WINAPI
D3DXCreateMesh(
DWORD NumFaces,
DWORD NumVertices,
DWORD Options,
CONST D3DVERTEXELEMENT9 *pDeclaration,
LPDIRECT3DDEVICE9 pD3DDevice,
LPD3DXMESH* ppMesh);
HRESULT WINAPI
D3DXCreateMeshFVF(
DWORD NumFaces,
DWORD NumVertices,
DWORD Options,
DWORD FVF,
LPDIRECT3DDEVICE9 pD3DDevice,
LPD3DXMESH* ppMesh);
HRESULT WINAPI
D3DXCreateSPMesh(
LPD3DXMESH pMesh,
CONST DWORD* pAdjacency,
CONST D3DXATTRIBUTEWEIGHTS *pVertexAttributeWeights,
CONST FLOAT *pVertexWeights,
LPD3DXSPMESH* ppSMesh);
// clean a mesh up for simplification, try to make manifold
HRESULT WINAPI
D3DXCleanMesh(
D3DXCLEANTYPE CleanType,
LPD3DXMESH pMeshIn,
CONST DWORD* pAdjacencyIn,
LPD3DXMESH* ppMeshOut,
DWORD* pAdjacencyOut,
LPD3DXBUFFER* ppErrorsAndWarnings);
HRESULT WINAPI
D3DXValidMesh(
LPD3DXMESH pMeshIn,
CONST DWORD* pAdjacency,
LPD3DXBUFFER* ppErrorsAndWarnings);
HRESULT WINAPI
D3DXGeneratePMesh(
LPD3DXMESH pMesh,
CONST DWORD* pAdjacency,
CONST D3DXATTRIBUTEWEIGHTS *pVertexAttributeWeights,
CONST FLOAT *pVertexWeights,
DWORD MinValue,
DWORD Options,
LPD3DXPMESH* ppPMesh);
HRESULT WINAPI
D3DXSimplifyMesh(
LPD3DXMESH pMesh,
CONST DWORD* pAdjacency,
CONST D3DXATTRIBUTEWEIGHTS *pVertexAttributeWeights,
CONST FLOAT *pVertexWeights,
DWORD MinValue,
DWORD Options,
LPD3DXMESH* ppMesh);
HRESULT WINAPI
D3DXComputeBoundingSphere(
CONST D3DXVECTOR3 *pFirstPosition, // pointer to first position
DWORD NumVertices,
DWORD dwStride, // count in bytes to subsequent position vectors
D3DXVECTOR3 *pCenter,
FLOAT *pRadius);
HRESULT WINAPI
D3DXComputeBoundingBox(
CONST D3DXVECTOR3 *pFirstPosition, // pointer to first position
DWORD NumVertices,
DWORD dwStride, // count in bytes to subsequent position vectors
D3DXVECTOR3 *pMin,
D3DXVECTOR3 *pMax);
HRESULT WINAPI
D3DXComputeNormals(
LPD3DXBASEMESH pMesh,
CONST DWORD *pAdjacency);
HRESULT WINAPI
D3DXCreateBuffer(
DWORD NumBytes,
LPD3DXBUFFER *ppBuffer);
HRESULT WINAPI
D3DXLoadMeshFromXA(
LPCSTR pFilename,
DWORD Options,
LPDIRECT3DDEVICE9 pD3DDevice,
LPD3DXBUFFER *ppAdjacency,
LPD3DXBUFFER *ppMaterials,
LPD3DXBUFFER *ppEffectInstances,
DWORD *pNumMaterials,
LPD3DXMESH *ppMesh);
HRESULT WINAPI
D3DXLoadMeshFromXW(
LPCWSTR pFilename,
DWORD Options,
LPDIRECT3DDEVICE9 pD3DDevice,
LPD3DXBUFFER *ppAdjacency,
LPD3DXBUFFER *ppMaterials,
LPD3DXBUFFER *ppEffectInstances,
DWORD *pNumMaterials,
LPD3DXMESH *ppMesh);
#ifdef UNICODE
#define D3DXLoadMeshFromX D3DXLoadMeshFromXW
#else
#define D3DXLoadMeshFromX D3DXLoadMeshFromXA
#endif
HRESULT WINAPI
D3DXLoadMeshFromXInMemory(
LPCVOID Memory,
DWORD SizeOfMemory,
DWORD Options,
LPDIRECT3DDEVICE9 pD3DDevice,
LPD3DXBUFFER *ppAdjacency,
LPD3DXBUFFER *ppMaterials,
LPD3DXBUFFER *ppEffectInstances,
DWORD *pNumMaterials,
LPD3DXMESH *ppMesh);
HRESULT WINAPI
D3DXLoadMeshFromXResource(
HMODULE Module,
LPCSTR Name,
LPCSTR Type,
DWORD Options,
LPDIRECT3DDEVICE9 pD3DDevice,
LPD3DXBUFFER *ppAdjacency,
LPD3DXBUFFER *ppMaterials,
LPD3DXBUFFER *ppEffectInstances,
DWORD *pNumMaterials,
LPD3DXMESH *ppMesh);
HRESULT WINAPI
D3DXSaveMeshToXA(
LPCSTR pFilename,
LPD3DXMESH pMesh,
CONST DWORD* pAdjacency,
CONST D3DXMATERIAL* pMaterials,
CONST D3DXEFFECTINSTANCE* pEffectInstances,
DWORD NumMaterials,
DWORD Format
);
HRESULT WINAPI
D3DXSaveMeshToXW(
LPCWSTR pFilename,
LPD3DXMESH pMesh,
CONST DWORD* pAdjacency,
CONST D3DXMATERIAL* pMaterials,
CONST D3DXEFFECTINSTANCE* pEffectInstances,
DWORD NumMaterials,
DWORD Format
);
#ifdef UNICODE
#define D3DXSaveMeshToX D3DXSaveMeshToXW
#else
#define D3DXSaveMeshToX D3DXSaveMeshToXA
#endif
HRESULT WINAPI
D3DXCreatePMeshFromStream(
IStream *pStream,
DWORD Options,
LPDIRECT3DDEVICE9 pD3DDevice,
LPD3DXBUFFER *ppMaterials,
LPD3DXBUFFER *ppEffectInstances,
DWORD* pNumMaterials,
LPD3DXPMESH *ppPMesh);
// Creates a skin info object based on the number of vertices, number of bones, and a declaration describing the vertex layout of the target vertices
// The bone names and initial bone transforms are not filled in the skin info object by this method.
HRESULT WINAPI
D3DXCreateSkinInfo(
DWORD NumVertices,
CONST D3DVERTEXELEMENT9 *pDeclaration,
DWORD NumBones,
LPD3DXSKININFO* ppSkinInfo);
// Creates a skin info object based on the number of vertices, number of bones, and a FVF describing the vertex layout of the target vertices
// The bone names and initial bone transforms are not filled in the skin info object by this method.
HRESULT WINAPI
D3DXCreateSkinInfoFVF(
DWORD NumVertices,
DWORD FVF,
DWORD NumBones,
LPD3DXSKININFO* ppSkinInfo);
#ifdef __cplusplus
}
extern "C" {
#endif //__cplusplus
HRESULT WINAPI
D3DXLoadMeshFromXof(
LPD3DXFILEDATA pxofMesh,
DWORD Options,
LPDIRECT3DDEVICE9 pD3DDevice,
LPD3DXBUFFER *ppAdjacency,
LPD3DXBUFFER *ppMaterials,
LPD3DXBUFFER *ppEffectInstances,
DWORD *pNumMaterials,
LPD3DXMESH *ppMesh);
// This similar to D3DXLoadMeshFromXof, except also returns skinning info if present in the file
// If skinning info is not present, ppSkinInfo will be NULL
HRESULT WINAPI
D3DXLoadSkinMeshFromXof(
LPD3DXFILEDATA pxofMesh,
DWORD Options,
LPDIRECT3DDEVICE9 pD3DDevice,
LPD3DXBUFFER* ppAdjacency,
LPD3DXBUFFER* ppMaterials,
LPD3DXBUFFER *ppEffectInstances,
DWORD *pMatOut,
LPD3DXSKININFO* ppSkinInfo,
LPD3DXMESH* ppMesh);
// The inverse of D3DXConvertTo{Indexed}BlendedMesh() functions. It figures out the skinning info from
// the mesh and the bone combination table and populates a skin info object with that data. The bone
// names and initial bone transforms are not filled in the skin info object by this method. This works
// with either a non-indexed or indexed blended mesh. It examines the FVF or declarator of the mesh to
// determine what type it is.
HRESULT WINAPI
D3DXCreateSkinInfoFromBlendedMesh(
LPD3DXBASEMESH pMesh,
DWORD NumBones,
CONST D3DXBONECOMBINATION *pBoneCombinationTable,
LPD3DXSKININFO* ppSkinInfo);
HRESULT WINAPI
D3DXTessellateNPatches(
LPD3DXMESH pMeshIn,
CONST DWORD* pAdjacencyIn,
FLOAT NumSegs,
BOOL QuadraticInterpNormals, // if false use linear intrep for normals, if true use quadratic
LPD3DXMESH *ppMeshOut,
LPD3DXBUFFER *ppAdjacencyOut);
//generates implied outputdecl from input decl
//the decl generated from this should be used to generate the output decl for
//the tessellator subroutines.
HRESULT WINAPI
D3DXGenerateOutputDecl(
D3DVERTEXELEMENT9 *pOutput,
CONST D3DVERTEXELEMENT9 *pInput);
//loads patches from an XFileData
//since an X file can have up to 6 different patch meshes in it,
//returns them in an array - pNumPatches will contain the number of
//meshes in the actual file.
HRESULT WINAPI
D3DXLoadPatchMeshFromXof(
LPD3DXFILEDATA pXofObjMesh,
DWORD Options,
LPDIRECT3DDEVICE9 pD3DDevice,
LPD3DXBUFFER *ppMaterials,
LPD3DXBUFFER *ppEffectInstances,
PDWORD pNumMaterials,
LPD3DXPATCHMESH *ppMesh);
//computes the size a single rect patch.
HRESULT WINAPI
D3DXRectPatchSize(
CONST FLOAT *pfNumSegs, //segments for each edge (4)
DWORD *pdwTriangles, //output number of triangles
DWORD *pdwVertices); //output number of vertices
//computes the size of a single triangle patch
HRESULT WINAPI
D3DXTriPatchSize(
CONST FLOAT *pfNumSegs, //segments for each edge (3)
DWORD *pdwTriangles, //output number of triangles
DWORD *pdwVertices); //output number of vertices
//tessellates a patch into a created mesh
//similar to D3D RT patch
HRESULT WINAPI
D3DXTessellateRectPatch(
LPDIRECT3DVERTEXBUFFER9 pVB,
CONST FLOAT *pNumSegs,
CONST D3DVERTEXELEMENT9 *pdwInDecl,
CONST D3DRECTPATCH_INFO *pRectPatchInfo,
LPD3DXMESH pMesh);
HRESULT WINAPI
D3DXTessellateTriPatch(
LPDIRECT3DVERTEXBUFFER9 pVB,
CONST FLOAT *pNumSegs,
CONST D3DVERTEXELEMENT9 *pInDecl,
CONST D3DTRIPATCH_INFO *pTriPatchInfo,
LPD3DXMESH pMesh);
//creates an NPatch PatchMesh from a D3DXMESH
HRESULT WINAPI
D3DXCreateNPatchMesh(
LPD3DXMESH pMeshSysMem,
LPD3DXPATCHMESH *pPatchMesh);
//creates a patch mesh
HRESULT WINAPI
D3DXCreatePatchMesh(
CONST D3DXPATCHINFO *pInfo, //patch type
DWORD dwNumPatches, //number of patches
DWORD dwNumVertices, //number of control vertices
DWORD dwOptions, //options
CONST D3DVERTEXELEMENT9 *pDecl, //format of control vertices
LPDIRECT3DDEVICE9 pD3DDevice,
LPD3DXPATCHMESH *pPatchMesh);
//returns the number of degenerates in a patch mesh -
//text output put in string.
HRESULT WINAPI
D3DXValidPatchMesh(LPD3DXPATCHMESH pMesh,
DWORD *dwcDegenerateVertices,
DWORD *dwcDegeneratePatches,
LPD3DXBUFFER *ppErrorsAndWarnings);
UINT WINAPI
D3DXGetFVFVertexSize(DWORD FVF);
UINT WINAPI
D3DXGetDeclVertexSize(CONST D3DVERTEXELEMENT9 *pDecl,DWORD Stream);
UINT WINAPI
D3DXGetDeclLength(CONST D3DVERTEXELEMENT9 *pDecl);
HRESULT WINAPI
D3DXDeclaratorFromFVF(
DWORD FVF,
D3DVERTEXELEMENT9 pDeclarator[MAX_FVF_DECL_SIZE]);
HRESULT WINAPI
D3DXFVFFromDeclarator(
CONST D3DVERTEXELEMENT9 *pDeclarator,
DWORD *pFVF);
HRESULT WINAPI
D3DXWeldVertices(
LPD3DXMESH pMesh,
DWORD Flags,
CONST D3DXWELDEPSILONS *pEpsilons,
CONST DWORD *pAdjacencyIn,
DWORD *pAdjacencyOut,
DWORD *pFaceRemap,
LPD3DXBUFFER *ppVertexRemap);
typedef struct _D3DXINTERSECTINFO
{
DWORD FaceIndex; // index of face intersected
FLOAT U; // Barycentric Hit Coordinates
FLOAT V; // Barycentric Hit Coordinates
FLOAT Dist; // Ray-Intersection Parameter Distance
} D3DXINTERSECTINFO, *LPD3DXINTERSECTINFO;
HRESULT WINAPI
D3DXIntersect(
LPD3DXBASEMESH pMesh,
CONST D3DXVECTOR3 *pRayPos,
CONST D3DXVECTOR3 *pRayDir,
BOOL *pHit, // True if any faces were intersected
DWORD *pFaceIndex, // index of closest face intersected
FLOAT *pU, // Barycentric Hit Coordinates
FLOAT *pV, // Barycentric Hit Coordinates
FLOAT *pDist, // Ray-Intersection Parameter Distance
LPD3DXBUFFER *ppAllHits, // Array of D3DXINTERSECTINFOs for all hits (not just closest)
DWORD *pCountOfHits); // Number of entries in AllHits array
HRESULT WINAPI
D3DXIntersectSubset(
LPD3DXBASEMESH pMesh,
DWORD AttribId,
CONST D3DXVECTOR3 *pRayPos,
CONST D3DXVECTOR3 *pRayDir,
BOOL *pHit, // True if any faces were intersected
DWORD *pFaceIndex, // index of closest face intersected
FLOAT *pU, // Barycentric Hit Coordinates
FLOAT *pV, // Barycentric Hit Coordinates
FLOAT *pDist, // Ray-Intersection Parameter Distance
LPD3DXBUFFER *ppAllHits, // Array of D3DXINTERSECTINFOs for all hits (not just closest)
DWORD *pCountOfHits); // Number of entries in AllHits array
HRESULT WINAPI D3DXSplitMesh
(
LPD3DXMESH pMeshIn,
CONST DWORD *pAdjacencyIn,
CONST DWORD MaxSize,
CONST DWORD Options,
DWORD *pMeshesOut,
LPD3DXBUFFER *ppMeshArrayOut,
LPD3DXBUFFER *ppAdjacencyArrayOut,
LPD3DXBUFFER *ppFaceRemapArrayOut,
LPD3DXBUFFER *ppVertRemapArrayOut
);
BOOL WINAPI D3DXIntersectTri
(
CONST D3DXVECTOR3 *p0, // Triangle vertex 0 position
CONST D3DXVECTOR3 *p1, // Triangle vertex 1 position
CONST D3DXVECTOR3 *p2, // Triangle vertex 2 position
CONST D3DXVECTOR3 *pRayPos, // Ray origin
CONST D3DXVECTOR3 *pRayDir, // Ray direction
FLOAT *pU, // Barycentric Hit Coordinates
FLOAT *pV, // Barycentric Hit Coordinates
FLOAT *pDist); // Ray-Intersection Parameter Distance
BOOL WINAPI
D3DXSphereBoundProbe(
CONST D3DXVECTOR3 *pCenter,
FLOAT Radius,
CONST D3DXVECTOR3 *pRayPosition,
CONST D3DXVECTOR3 *pRayDirection);
BOOL WINAPI
D3DXBoxBoundProbe(
CONST D3DXVECTOR3 *pMin,
CONST D3DXVECTOR3 *pMax,
CONST D3DXVECTOR3 *pRayPosition,
CONST D3DXVECTOR3 *pRayDirection);
//D3DXComputeTangent
//
//Computes the Tangent vectors for the TexStage texture coordinates
//and places the results in the TANGENT[TangentIndex] specified in the meshes' DECL
//puts the binorm in BINORM[BinormIndex] also specified in the decl.
//
//If neither the binorm or the tangnet are in the meshes declaration,
//the function will fail.
//
//If a tangent or Binorm field is in the Decl, but the user does not
//wish D3DXComputeTangent to replace them, then D3DX_DEFAULT specified
//in the TangentIndex or BinormIndex will cause it to ignore the specified
//semantic.
//
//Wrap should be specified if the texture coordinates wrap.
HRESULT WINAPI D3DXComputeTangent(LPD3DXMESH Mesh,
DWORD TexStage,
DWORD TangentIndex,
DWORD BinormIndex,
DWORD Wrap,
CONST DWORD *pAdjacency);
HRESULT WINAPI
D3DXConvertMeshSubsetToSingleStrip(
LPD3DXBASEMESH MeshIn,
DWORD AttribId,
DWORD IBOptions,
LPDIRECT3DINDEXBUFFER9 *ppIndexBuffer,
DWORD *pNumIndices);
HRESULT WINAPI
D3DXConvertMeshSubsetToStrips(
LPD3DXBASEMESH MeshIn,
DWORD AttribId,
DWORD IBOptions,
LPDIRECT3DINDEXBUFFER9 *ppIndexBuffer,
DWORD *pNumIndices,
LPD3DXBUFFER *ppStripLengths,
DWORD *pNumStrips);
//============================================================================
//
// D3DXOptimizeFaces:
// --------------------
// Generate a face remapping for a triangle list that more effectively utilizes
// vertex caches. This optimization is identical to the one provided
// by ID3DXMesh::Optimize with the hardware independent option enabled.
//
// Parameters:
// pbIndices
// Triangle list indices to use for generating a vertex ordering
// NumFaces
// Number of faces in the triangle list
// NumVertices
// Number of vertices referenced by the triangle list
// b32BitIndices
// TRUE if indices are 32 bit, FALSE if indices are 16 bit
// pFaceRemap
// Destination buffer to store face ordering
// The number stored for a given element is where in the new ordering
// the face will have come from. See ID3DXMesh::Optimize for more info.
//
//============================================================================
HRESULT WINAPI
D3DXOptimizeFaces(
LPCVOID pbIndices,
UINT cFaces,
UINT cVertices,
BOOL b32BitIndices,
DWORD* pFaceRemap);
//============================================================================
//
// D3DXOptimizeVertices:
// --------------------
// Generate a vertex remapping to optimize for in order use of vertices for
// a given set of indices. This is commonly used after applying the face
// remap generated by D3DXOptimizeFaces
//
// Parameters:
// pbIndices
// Triangle list indices to use for generating a vertex ordering
// NumFaces
// Number of faces in the triangle list
// NumVertices
// Number of vertices referenced by the triangle list
// b32BitIndices
// TRUE if indices are 32 bit, FALSE if indices are 16 bit
// pVertexRemap
// Destination buffer to store vertex ordering
// The number stored for a given element is where in the new ordering
// the vertex will have come from. See ID3DXMesh::Optimize for more info.
//
//============================================================================
HRESULT WINAPI
D3DXOptimizeVertices(
LPCVOID pbIndices,
UINT cFaces,
UINT cVertices,
BOOL b32BitIndices,
DWORD* pVertexRemap);
#ifdef __cplusplus
}
#endif //__cplusplus
//===========================================================================
//
// Data structures for Spherical Harmonic Precomputation
//
//
//============================================================================
typedef enum _D3DXSHCOMPRESSQUALITYTYPE {
D3DXSHCQUAL_FASTLOWQUALITY = 1,
D3DXSHCQUAL_SLOWHIGHQUALITY = 2,
D3DXSHCQUAL_FORCE_DWORD = 0x7fffffff
} D3DXSHCOMPRESSQUALITYTYPE;
typedef enum _D3DXSHGPUSIMOPT {
D3DXSHGPUSIMOPT_SHADOWRES256 = 1,
D3DXSHGPUSIMOPT_SHADOWRES512 = 0,
D3DXSHGPUSIMOPT_SHADOWRES1024 = 2,
D3DXSHGPUSIMOPT_SHADOWRES2048 = 3,
D3DXSHGPUSIMOPT_HIGHQUALITY = 4,
D3DXSHGPUSIMOPT_FORCE_DWORD = 0x7fffffff
} D3DXSHGPUSIMOPT;
// for all properties that are colors the luminance is computed
// if the simulator is run with a single channel using the following
// formula: R * 0.2125 + G * 0.7154 + B * 0.0721
typedef struct _D3DXSHMATERIAL {
D3DCOLORVALUE Diffuse; // Diffuse albedo of the surface. (Ignored if object is a Mirror)
BOOL bMirror; // Must be set to FALSE. bMirror == TRUE not currently supported
BOOL bSubSurf; // true if the object does subsurface scattering - can't do this and be a mirror
// subsurface scattering parameters
FLOAT RelativeIndexOfRefraction;
D3DCOLORVALUE Absorption;
D3DCOLORVALUE ReducedScattering;
} D3DXSHMATERIAL;
// allocated in D3DXSHPRTCompSplitMeshSC
// vertices are duplicated into multiple super clusters but
// only have a valid status in one super cluster (fill in the rest)
typedef struct _D3DXSHPRTSPLITMESHVERTDATA {
UINT uVertRemap; // vertex in original mesh this corresponds to
UINT uSubCluster; // cluster index relative to super cluster
UCHAR ucVertStatus; // 1 if vertex has valid data, 0 if it is "fill"
} D3DXSHPRTSPLITMESHVERTDATA;
// used in D3DXSHPRTCompSplitMeshSC
// information for each super cluster that maps into face/vert arrays
typedef struct _D3DXSHPRTSPLITMESHCLUSTERDATA {
UINT uVertStart; // initial index into remapped vertex array
UINT uVertLength; // number of vertices in this super cluster
UINT uFaceStart; // initial index into face array
UINT uFaceLength; // number of faces in this super cluster
UINT uClusterStart; // initial index into cluster array
UINT uClusterLength; // number of clusters in this super cluster
} D3DXSHPRTSPLITMESHCLUSTERDATA;
// call back function for simulator
// return S_OK to keep running the simulator - anything else represents
// failure and the simulator will abort.
typedef HRESULT (WINAPI *LPD3DXSHPRTSIMCB)(float fPercentDone, LPVOID lpUserContext);
// interfaces for PRT buffers/simulator
// GUIDs
// {F1827E47-00A8-49cd-908C-9D11955F8728}
DEFINE_GUID(IID_ID3DXPRTBuffer,
0xf1827e47, 0xa8, 0x49cd, 0x90, 0x8c, 0x9d, 0x11, 0x95, 0x5f, 0x87, 0x28);
// {A758D465-FE8D-45ad-9CF0-D01E56266A07}
DEFINE_GUID(IID_ID3DXPRTCompBuffer,
0xa758d465, 0xfe8d, 0x45ad, 0x9c, 0xf0, 0xd0, 0x1e, 0x56, 0x26, 0x6a, 0x7);
// {06F57E0A-BD95-43f1-A3DA-791CF6CA297B}
DEFINE_GUID(IID_ID3DXTextureGutterHelper,
0x6f57e0a, 0xbd95, 0x43f1, 0xa3, 0xda, 0x79, 0x1c, 0xf6, 0xca, 0x29, 0x7b);
// {C3F4ADBF-E6D2-4b7b-BFE8-9E7208746ADF}
DEFINE_GUID(IID_ID3DXPRTEngine,
0xc3f4adbf, 0xe6d2, 0x4b7b, 0xbf, 0xe8, 0x9e, 0x72, 0x8, 0x74, 0x6a, 0xdf);
// interface defenitions
typedef interface ID3DXTextureGutterHelper ID3DXTextureGutterHelper;
typedef interface ID3DXTextureGutterHelper *LPD3DXTEXTUREGUTTERHELPER;
typedef interface ID3DXPRTBuffer ID3DXPRTBuffer;
typedef interface ID3DXPRTBuffer *LPD3DXPRTBUFFER;
#undef INTERFACE
#define INTERFACE ID3DXPRTBuffer
// Buffer interface - contains "NumSamples" samples
// each sample in memory is stored as NumCoeffs scalars per channel (1 or 3)
// Same interface is used for both Vertex and Pixel PRT buffers
DECLARE_INTERFACE_(ID3DXPRTBuffer, IUnknown)
{
// IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE;
STDMETHOD_(ULONG, AddRef)(THIS) PURE;
STDMETHOD_(ULONG, Release)(THIS) PURE;
// ID3DXPRTBuffer
STDMETHOD_(UINT, GetNumSamples)(THIS) PURE;
STDMETHOD_(UINT, GetNumCoeffs)(THIS) PURE;
STDMETHOD_(UINT, GetNumChannels)(THIS) PURE;
STDMETHOD_(BOOL, IsTexture)(THIS) PURE;
STDMETHOD_(UINT, GetWidth)(THIS) PURE;
STDMETHOD_(UINT, GetHeight)(THIS) PURE;
// changes the number of samples allocated in the buffer
STDMETHOD(Resize)(THIS_ UINT NewSize) PURE;
// ppData will point to the memory location where sample Start begins
// pointer is valid for at least NumSamples samples
STDMETHOD(LockBuffer)(THIS_ UINT Start, UINT NumSamples, FLOAT **ppData) PURE;
STDMETHOD(UnlockBuffer)(THIS) PURE;
// every scalar in buffer is multiplied by Scale
STDMETHOD(ScaleBuffer)(THIS_ FLOAT Scale) PURE;
// every scalar contains the sum of this and pBuffers values
// pBuffer must have the same storage class/dimensions
STDMETHOD(AddBuffer)(THIS_ LPD3DXPRTBUFFER pBuffer) PURE;
// GutterHelper (described below) will fill in the gutter
// regions of a texture by interpolating "internal" values
STDMETHOD(AttachGH)(THIS_ LPD3DXTEXTUREGUTTERHELPER) PURE;
STDMETHOD(ReleaseGH)(THIS) PURE;
// Evaluates attached gutter helper on the contents of this buffer
STDMETHOD(EvalGH)(THIS) PURE;
// extracts a given channel into texture pTexture
// NumCoefficients starting from StartCoefficient are copied
STDMETHOD(ExtractTexture)(THIS_ UINT Channel, UINT StartCoefficient,
UINT NumCoefficients, LPDIRECT3DTEXTURE9 pTexture) PURE;
// extracts NumCoefficients coefficients into mesh - only applicable on single channel
// buffers, otherwise just lockbuffer and copy data. With SHPRT data NumCoefficients
// should be Order^2
STDMETHOD(ExtractToMesh)(THIS_ UINT NumCoefficients, D3DDECLUSAGE Usage, UINT UsageIndexStart,
LPD3DXMESH pScene) PURE;
};
typedef interface ID3DXPRTCompBuffer ID3DXPRTCompBuffer;
typedef interface ID3DXPRTCompBuffer *LPD3DXPRTCOMPBUFFER;
#undef INTERFACE
#define INTERFACE ID3DXPRTCompBuffer
// compressed buffers stored a compressed version of a PRTBuffer
DECLARE_INTERFACE_(ID3DXPRTCompBuffer, IUnknown)
{
// IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE;
STDMETHOD_(ULONG, AddRef)(THIS) PURE;
STDMETHOD_(ULONG, Release)(THIS) PURE;
// ID3DPRTCompBuffer
// NumCoeffs and NumChannels are properties of input buffer
STDMETHOD_(UINT, GetNumSamples)(THIS) PURE;
STDMETHOD_(UINT, GetNumCoeffs)(THIS) PURE;
STDMETHOD_(UINT, GetNumChannels)(THIS) PURE;
STDMETHOD_(BOOL, IsTexture)(THIS) PURE;
STDMETHOD_(UINT, GetWidth)(THIS) PURE;
STDMETHOD_(UINT, GetHeight)(THIS) PURE;
// number of clusters, and PCA vectors per-cluster
STDMETHOD_(UINT, GetNumClusters)(THIS) PURE;
STDMETHOD_(UINT, GetNumPCA)(THIS) PURE;
// normalizes PCA weights so that they are between [-1,1]
// basis vectors are modified to reflect this
STDMETHOD(NormalizeData)(THIS) PURE;
// copies basis vectors for cluster "Cluster" into pClusterBasis
// (NumPCA+1)*NumCoeffs*NumChannels floats
STDMETHOD(ExtractBasis)(THIS_ UINT Cluster, FLOAT *pClusterBasis) PURE;
// UINT per sample - which cluster it belongs to
STDMETHOD(ExtractClusterIDs)(THIS_ UINT *pClusterIDs) PURE;
// copies NumExtract PCA projection coefficients starting at StartPCA
// into pPCACoefficients - NumSamples*NumExtract floats copied
STDMETHOD(ExtractPCA)(THIS_ UINT StartPCA, UINT NumExtract, FLOAT *pPCACoefficients) PURE;
// copies NumPCA projection coefficients starting at StartPCA
// into pTexture - should be able to cope with signed formats
STDMETHOD(ExtractTexture)(THIS_ UINT StartPCA, UINT NumpPCA,
LPDIRECT3DTEXTURE9 pTexture) PURE;
// copies NumPCA projection coefficients into mesh pScene
// Usage is D3DDECLUSAGE where coefficients are to be stored
// UsageIndexStart is starting index
STDMETHOD(ExtractToMesh)(THIS_ UINT NumPCA, D3DDECLUSAGE Usage, UINT UsageIndexStart,
LPD3DXMESH pScene) PURE;
};
#undef INTERFACE
#define INTERFACE ID3DXTextureGutterHelper
// ID3DXTextureGutterHelper will build and manage
// "gutter" regions in a texture - this will allow for
// bi-linear interpolation to not have artifacts when rendering
// It generates a map (in texture space) where each texel
// is in one of 3 states:
// 0 Invalid - not used at all
// 1 Inside triangle
// 2 Gutter texel
// 4 represents a gutter texel that will be computed during PRT
// For each Inside/Gutter texel it stores the face it
// belongs to and barycentric coordinates for the 1st two
// vertices of that face. Gutter vertices are assigned to
// the closest edge in texture space.
//
// When used with PRT this requires a unique parameterization
// of the model - every texel must correspond to a single point
// on the surface of the model and vice versa
DECLARE_INTERFACE_(ID3DXTextureGutterHelper, IUnknown)
{
// IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE;
STDMETHOD_(ULONG, AddRef)(THIS) PURE;
STDMETHOD_(ULONG, Release)(THIS) PURE;
// ID3DXTextureGutterHelper
// dimensions of texture this is bound too
STDMETHOD_(UINT, GetWidth)(THIS) PURE;
STDMETHOD_(UINT, GetHeight)(THIS) PURE;
// Applying gutters recomputes all of the gutter texels of class "2"
// based on texels of class "1" or "4"
// Applies gutters to a raw float buffer - each texel is NumCoeffs floats
// Width and Height must match GutterHelper
STDMETHOD(ApplyGuttersFloat)(THIS_ FLOAT *pDataIn, UINT NumCoeffs, UINT Width, UINT Height);
// Applies gutters to pTexture
// Dimensions must match GutterHelper
STDMETHOD(ApplyGuttersTex)(THIS_ LPDIRECT3DTEXTURE9 pTexture);
// Applies gutters to a D3DXPRTBuffer
// Dimensions must match GutterHelper
STDMETHOD(ApplyGuttersPRT)(THIS_ LPD3DXPRTBUFFER pBuffer);
// the routines below provide access to the data structures
// used by the Apply functions
// face map is a UINT per texel that represents the
// face of the mesh that texel belongs too -
// only valid if same texel is valid in pGutterData
// pFaceData must be allocated by the user
STDMETHOD(GetFaceMap)(THIS_ UINT *pFaceData) PURE;
// BaryMap is a D3DXVECTOR2 per texel
// the 1st two barycentric coordinates for the corresponding
// face (3rd weight is always 1-sum of first two)
// only valid if same texel is valid in pGutterData
// pBaryData must be allocated by the user
STDMETHOD(GetBaryMap)(THIS_ D3DXVECTOR2 *pBaryData) PURE;
// TexelMap is a D3DXVECTOR2 per texel that
// stores the location in pixel coordinates where the
// corresponding texel is mapped
// pTexelData must be allocated by the user
STDMETHOD(GetTexelMap)(THIS_ D3DXVECTOR2 *pTexelData) PURE;
// GutterMap is a BYTE per texel
// 0/1/2 for Invalid/Internal/Gutter texels
// 4 represents a gutter texel that will be computed
// during PRT
// pGutterData must be allocated by the user
STDMETHOD(GetGutterMap)(THIS_ BYTE *pGutterData) PURE;
// face map is a UINT per texel that represents the
// face of the mesh that texel belongs too -
// only valid if same texel is valid in pGutterData
STDMETHOD(SetFaceMap)(THIS_ UINT *pFaceData) PURE;
// BaryMap is a D3DXVECTOR2 per texel
// the 1st two barycentric coordinates for the corresponding
// face (3rd weight is always 1-sum of first two)
// only valid if same texel is valid in pGutterData
STDMETHOD(SetBaryMap)(THIS_ D3DXVECTOR2 *pBaryData) PURE;
// TexelMap is a D3DXVECTOR2 per texel that
// stores the location in pixel coordinates where the
// corresponding texel is mapped
STDMETHOD(SetTexelMap)(THIS_ D3DXVECTOR2 *pTexelData) PURE;
// GutterMap is a BYTE per texel
// 0/1/2 for Invalid/Internal/Gutter texels
// 4 represents a gutter texel that will be computed
// during PRT
STDMETHOD(SetGutterMap)(THIS_ BYTE *pGutterData) PURE;
};
typedef interface ID3DXPRTEngine ID3DXPRTEngine;
typedef interface ID3DXPRTEngine *LPD3DXPRTENGINE;
#undef INTERFACE
#define INTERFACE ID3DXPRTEngine
// ID3DXPRTEngine is used to compute a PRT simulation
// Use the following steps to compute PRT for SH
// (1) create an interface (which includes a scene)
// (2) call SetSamplingInfo
// (3) [optional] Set MeshMaterials/albedo's (required if doing bounces)
// (4) call ComputeDirectLightingSH
// (5) [optional] call ComputeBounce
// repeat step 5 for as many bounces as wanted.
// if you want to model subsurface scattering you
// need to call ComputeSS after direct lighting and
// each bounce.
// If you want to bake the albedo into the PRT signal, you
// must call MutliplyAlbedo, otherwise the user has to multiply
// the albedo themselves. Not multiplying the albedo allows you
// to model albedo variation at a finer scale then illumination, and
// can result in better compression results.
// Luminance values are computed from RGB values using the following
// formula: R * 0.2125 + G * 0.7154 + B * 0.0721
DECLARE_INTERFACE_(ID3DXPRTEngine, IUnknown)
{
// IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE;
STDMETHOD_(ULONG, AddRef)(THIS) PURE;
STDMETHOD_(ULONG, Release)(THIS) PURE;
// ID3DXPRTEngine
// This sets a material per attribute in the scene mesh and it is
// the only way to specify subsurface scattering parameters. if
// bSetAlbedo is FALSE, NumChannels must match the current
// configuration of the PRTEngine. If you intend to change
// NumChannels (through some other SetAlbedo function) it must
// happen before SetMeshMaterials is called.
//
// NumChannels 1 implies "grayscale" materials, set this to 3 to enable
// color bleeding effects
// bSetAlbedo sets albedo from material if TRUE - which clobbers per texel/vertex
// albedo that might have been set before. FALSE won't clobber.
// fLengthScale is used for subsurface scattering - scene is mapped into a 1mm unit cube
// and scaled by this amount
STDMETHOD(SetMeshMaterials)(THIS_ CONST D3DXSHMATERIAL **ppMaterials, UINT NumMeshes,
UINT NumChannels, BOOL bSetAlbedo, FLOAT fLengthScale) PURE;
// setting albedo per-vertex or per-texel over rides the albedos stored per mesh
// but it does not over ride any other settings
// sets an albedo to be used per vertex - the albedo is represented as a float
// pDataIn input pointer (pointint to albedo of 1st sample)
// NumChannels 1 implies "grayscale" materials, set this to 3 to enable
// color bleeding effects
// Stride - stride in bytes to get to next samples albedo
STDMETHOD(SetPerVertexAlbedo)(THIS_ CONST VOID *pDataIn, UINT NumChannels, UINT Stride) PURE;
// represents the albedo per-texel instead of per-vertex (even if per-vertex PRT is used)
// pAlbedoTexture - texture that stores the albedo (dimension arbitrary)
// NumChannels 1 implies "grayscale" materials, set this to 3 to enable
// color bleeding effects
// pGH - optional gutter helper, otherwise one is constructed in computation routines and
// destroyed (if not attached to buffers)
STDMETHOD(SetPerTexelAlbedo)(THIS_ LPDIRECT3DTEXTURE9 pAlbedoTexture,
UINT NumChannels,
LPD3DXTEXTUREGUTTERHELPER pGH) PURE;
// gets the per-vertex albedo
STDMETHOD(GetVertexAlbedo)(THIS_ D3DXCOLOR *pVertColors, UINT NumVerts) PURE;
// If pixel PRT is being computed normals default to ones that are interpolated
// from the vertex normals. This specifies a texture that stores an object
// space normal map instead (must use a texture format that can represent signed values)
// pNormalTexture - normal map, must be same dimensions as PRTBuffers, signed
STDMETHOD(SetPerTexelNormal)(THIS_ LPDIRECT3DTEXTURE9 pNormalTexture) PURE;
// Copies per-vertex albedo from mesh
// pMesh - mesh that represents the scene. It must have the same
// properties as the mesh used to create the PRTEngine
// Usage - D3DDECLUSAGE to extract albedos from
// NumChannels 1 implies "grayscale" materials, set this to 3 to enable
// color bleeding effects
STDMETHOD(ExtractPerVertexAlbedo)(THIS_ LPD3DXMESH pMesh,
D3DDECLUSAGE Usage,
UINT NumChannels) PURE;
// Resamples the input buffer into the output buffer
// can be used to move between per-vertex and per-texel buffers. This can also be used
// to convert single channel buffers to 3-channel buffers and vice-versa.
STDMETHOD(ResampleBuffer)(THIS_ LPD3DXPRTBUFFER pBufferIn, LPD3DXPRTBUFFER pBufferOut) PURE;
// Returns the scene mesh - including modifications from adaptive spatial sampling
// The returned mesh only has positions, normals and texture coordinates (if defined)
// pD3DDevice - d3d device that will be used to allocate the mesh
// pFaceRemap - each face has a pointer back to the face on the original mesh that it comes from
// if the face hasn't been subdivided this will be an identity mapping
// pVertRemap - each vertex contains 3 vertices that this is a linear combination of
// pVertWeights - weights for each of above indices (sum to 1.0f)
// ppMesh - mesh that will be allocated and filled
STDMETHOD(GetAdaptedMesh)(THIS_ LPDIRECT3DDEVICE9 pD3DDevice,UINT *pFaceRemap, UINT *pVertRemap, FLOAT *pfVertWeights, LPD3DXMESH *ppMesh) PURE;
// Number of vertices currently allocated (includes new vertices from adaptive sampling)
STDMETHOD_(UINT, GetNumVerts)(THIS) PURE;
// Number of faces currently allocated (includes new faces)
STDMETHOD_(UINT, GetNumFaces)(THIS) PURE;
// This will subdivide faces on a mesh so that adaptively simulations can
// use a more conservative threshold (it won't miss features.)
// MinEdgeLength - minimum edge length that will be generated, if 0.0f a
// reasonable default will be used
// MaxSubdiv - maximum level of subdivision, if 0 is specified a default
// value will be used (5)
STDMETHOD(RobustMeshRefine)(THIS_ FLOAT MinEdgeLength, UINT MaxSubdiv) PURE;
// This sets to sampling information used by the simulator. Adaptive sampling
// parameters are currently ignored.
// NumRays - number of rays to shoot per sample
// UseSphere - if TRUE uses spherical samples, otherwise samples over
// the hemisphere. Should only be used with GPU and Vol computations
// UseCosine - if TRUE uses a cosine weighting - not used for Vol computations
// or if only the visiblity function is desired
// Adaptive - if TRUE adaptive sampling (angular) is used
// AdaptiveThresh - threshold used to terminate adaptive angular sampling
// ignored if adaptive sampling is not set
STDMETHOD(SetSamplingInfo)(THIS_ UINT NumRays,
BOOL UseSphere,
BOOL UseCosine,
BOOL Adaptive,
FLOAT AdaptiveThresh) PURE;
// Methods that compute the direct lighting contribution for objects
// always represente light using spherical harmonics (SH)
// the albedo is not multiplied by the signal - it just integrates
// incoming light. If NumChannels is not 1 the vector is replicated
//
// SHOrder - order of SH to use
// pDataOut - PRT buffer that is generated. Can be single channel
STDMETHOD(ComputeDirectLightingSH)(THIS_ UINT SHOrder,
LPD3DXPRTBUFFER pDataOut) PURE;
// Adaptive variant of above function. This will refine the mesh
// generating new vertices/faces to approximate the PRT signal
// more faithfully.
// SHOrder - order of SH to use
// AdaptiveThresh - threshold for adaptive subdivision (in PRT vector error)
// if value is less then 1e-6f, 1e-6f is specified
// MinEdgeLength - minimum edge length that will be generated
// if value is too small a fairly conservative model dependent value
// is used
// MaxSubdiv - maximum subdivision level, if 0 is specified it
// will default to 4
// pDataOut - PRT buffer that is generated. Can be single channel.
STDMETHOD(ComputeDirectLightingSHAdaptive)(THIS_ UINT SHOrder,
FLOAT AdaptiveThresh,
FLOAT MinEdgeLength,
UINT MaxSubdiv,
LPD3DXPRTBUFFER pDataOut) PURE;
// Function that computes the direct lighting contribution for objects
// light is always represented using spherical harmonics (SH)
// This is done on the GPU and is much faster then using the CPU.
// The albedo is not multiplied by the signal - it just integrates
// incoming light. If NumChannels is not 1 the vector is replicated.
// ZBias/ZAngleBias are akin to parameters used with shadow zbuffers.
// A reasonable default for both values is 0.005, but the user should
// experiment (ZAngleBias can be zero, ZBias should not be.)
// Callbacks should not use the Direct3D9Device the simulator is using.
// SetSamplingInfo must be called with TRUE for UseSphere and
// FALSE for UseCosine before this method is called.
//
// pD3DDevice - device used to run GPU simulator - must support PS2.0
// and FP render targets
// Flags - parameters for the GPU simulator, combination of one or more
// D3DXSHGPUSIMOPT flags. Only one SHADOWRES setting should be set and
// the defaults is 512
// SHOrder - order of SH to use
// ZBias - bias in normal direction (for depth test)
// ZAngleBias - scaled by one minus cosine of angle with light (offset in depth)
// pDataOut - PRT buffer that is filled in. Can be single channel
STDMETHOD(ComputeDirectLightingSHGPU)(THIS_ LPDIRECT3DDEVICE9 pD3DDevice,
UINT Flags,
UINT SHOrder,
FLOAT ZBias,
FLOAT ZAngleBias,
LPD3DXPRTBUFFER pDataOut) PURE;
// Functions that computes subsurface scattering (using material properties)
// Albedo is not multiplied by result. This only works for per-vertex data
// use ResampleBuffer to move per-vertex data into a texture and back.
//
// pDataIn - input data (previous bounce)
// pDataOut - result of subsurface scattering simulation
// pDataTotal - [optional] results can be summed into this buffer
STDMETHOD(ComputeSS)(THIS_ LPD3DXPRTBUFFER pDataIn,
LPD3DXPRTBUFFER pDataOut, LPD3DXPRTBUFFER pDataTotal) PURE;
// computes a single bounce of inter-reflected light
// works for SH based PRT or generic lighting
// Albedo is not multiplied by result
//
// pDataIn - previous bounces data
// pDataOut - PRT buffer that is generated
// pDataTotal - [optional] can be used to keep a running sum
STDMETHOD(ComputeBounce)(THIS_ LPD3DXPRTBUFFER pDataIn,
LPD3DXPRTBUFFER pDataOut,
LPD3DXPRTBUFFER pDataTotal) PURE;
// Adaptive version of above function.
//
// pDataIn - previous bounces data, can be single channel
// AdaptiveThresh - threshold for adaptive subdivision (in PRT vector error)
// if value is less then 1e-6f, 1e-6f is specified
// MinEdgeLength - minimum edge length that will be generated
// if value is too small a fairly conservative model dependent value
// is used
// MaxSubdiv - maximum subdivision level, if 0 is specified it
// will default to 4
// pDataOut - PRT buffer that is generated
// pDataTotal - [optional] can be used to keep a running sum
STDMETHOD(ComputeBounceAdaptive)(THIS_ LPD3DXPRTBUFFER pDataIn,
FLOAT AdaptiveThresh,
FLOAT MinEdgeLength,
UINT MaxSubdiv,
LPD3DXPRTBUFFER pDataOut,
LPD3DXPRTBUFFER pDataTotal) PURE;
// Computes projection of distant SH radiance into a local SH radiance
// function. This models how direct lighting is attenuated by the
// scene and is a form of "neighborhood transfer." The result is
// a linear operator (matrix) at every sample point, if you multiply
// this matrix by the distant SH lighting coefficients you get an
// approximation of the local incident radiance function from
// direct lighting. These resulting lighting coefficients can
// than be projected into another basis or used with any rendering
// technique that uses spherical harmonics as input.
// SetSamplingInfo must be called with TRUE for UseSphere and
// FALSE for UseCosine before this method is called.
// Generates SHOrderIn*SHOrderIn*SHOrderOut*SHOrderOut scalars
// per channel at each sample location.
//
// SHOrderIn - Order of the SH representation of distant lighting
// SHOrderOut - Order of the SH representation of local lighting
// NumVolSamples - Number of sample locations
// pSampleLocs - position of sample locations
// pDataOut - PRT Buffer that will store output results
STDMETHOD(ComputeVolumeSamplesDirectSH)(THIS_ UINT SHOrderIn,
UINT SHOrderOut,
UINT NumVolSamples,
CONST D3DXVECTOR3 *pSampleLocs,
LPD3DXPRTBUFFER pDataOut) PURE;
// At each sample location computes a linear operator (matrix) that maps
// the representation of source radiance (NumCoeffs in pSurfDataIn)
// into a local incident radiance function approximated with spherical
// harmonics. For example if a light map data is specified in pSurfDataIn
// the result is an SH representation of the flow of light at each sample
// point. If PRT data for an outdoor scene is used, each sample point
// contains a matrix that models how distant lighting bounces of the objects
// in the scene and arrives at the given sample point. Combined with
// ComputeVolumeSamplesDirectSH this gives the complete representation for
// how light arrives at each sample point parameterized by distant lighting.
// SetSamplingInfo must be called with TRUE for UseSphere and
// FALSE for UseCosine before this method is called.
// Generates pSurfDataIn->NumCoeffs()*SHOrder*SHOrder scalars
// per channel at each sample location.
//
// pSurfDataIn - previous bounce data
// SHOrder - order of SH to generate projection with
// NumVolSamples - Number of sample locations
// pSampleLocs - position of sample locations
// pDataOut - PRT Buffer that will store output results
STDMETHOD(ComputeVolumeSamples)(THIS_ LPD3DXPRTBUFFER pSurfDataIn,
UINT SHOrder,
UINT NumVolSamples,
CONST D3DXVECTOR3 *pSampleLocs,
LPD3DXPRTBUFFER pDataOut) PURE;
// Frees temporary data structures that can be created for subsurface scattering
// this data is freed when the PRTComputeEngine is freed and is lazily created
STDMETHOD(FreeSSData)(THIS) PURE;
// Frees temporary data structures that can be created for bounce simulations
// this data is freed when the PRTComputeEngine is freed and is lazily created
STDMETHOD(FreeBounceData)(THIS) PURE;
// This computes the convolution coefficients relative to the per sample normals
// that minimize error in a least squares sense with respect to the input PRT
// data set. These coefficients can be used with skinned/transformed normals to
// model global effects with dynamic objects. Shading normals can optionaly be
// solved for - these normals (along with the convolution coefficients) can more
// accurately represent the PRT signal.
//
// pDataIn - SH PRT dataset that is input
// SHOrder - Order of SH to compute conv coefficients for
// pNormOut - Optional array of vectors (passed in) that will be filled with
// "shading normals", convolution coefficients are optimized for
// these normals. This array must be the same size as the number of
// samples in pDataIn
// pDataOut - Output buffer (SHOrder convolution coefficients per channel per sample)
STDMETHOD(ComputeConvCoeffs)(THIS_ LPD3DXPRTBUFFER pDataIn,
UINT SHOrder,
D3DXVECTOR3 *pNormOut,
LPD3DXPRTBUFFER pDataOut) PURE;
// scales all the samples associated with a given sub mesh
// can be useful when using subsurface scattering
// fScale - value to scale each vector in submesh by
STDMETHOD(ScaleMeshChunk)(THIS_ UINT uMeshChunk, FLOAT fScale, LPD3DXPRTBUFFER pDataOut) PURE;
// mutliplies each PRT vector by the albedo - can be used if you want to have the albedo
// burned into the dataset, often better not to do this. If this is not done the user
// must mutliply the albedo themselves when rendering - just multiply the albedo times
// the result of the PRT dot product.
// If pDataOut is a texture simulation result and there is an albedo texture it
// must be represented at the same resolution as the simulation buffer. You can use
// LoadSurfaceFromSurface and set a new albedo texture if this is an issue - but must
// be careful about how the gutters are handled.
//
// pDataOut - dataset that will get albedo pushed into it
STDMETHOD(MultiplyAlbedo)(THIS_ LPD3DXPRTBUFFER pDataOut) PURE;
// Sets a pointer to an optional call back function that reports back to the
// user percentage done and gives them the option of quitting
// pCB - pointer to call back function, return S_OK for the simulation
// to continue
// Frequency - 1/Frequency is roughly the number of times the call back
// will be invoked
// lpUserContext - will be passed back to the users call back
STDMETHOD(SetCallBack)(THIS_ LPD3DXSHPRTSIMCB pCB, FLOAT Frequency, LPVOID lpUserContext) PURE;
};
// API functions for creating interfaces
#ifdef __cplusplus
extern "C" {
#endif //__cplusplus
//============================================================================
//
// D3DXCreatePRTBuffer:
// --------------------
// Generates a PRT Buffer that can be compressed or filled by a simulator
// This function should be used to create per-vertex or volume buffers.
// When buffers are created all values are initialized to zero.
//
// Parameters:
// NumSamples
// Number of sample locations represented
// NumCoeffs
// Number of coefficients per sample location (order^2 for SH)
// NumChannels
// Number of color channels to represent (1 or 3)
// ppBuffer
// Buffer that will be allocated
//
//============================================================================
HRESULT WINAPI
D3DXCreatePRTBuffer(
UINT NumSamples,
UINT NumCoeffs,
UINT NumChannels,
LPD3DXPRTBUFFER* ppBuffer);
//============================================================================
//
// D3DXCreatePRTBufferTex:
// --------------------
// Generates a PRT Buffer that can be compressed or filled by a simulator
// This function should be used to create per-pixel buffers.
// When buffers are created all values are initialized to zero.
//
// Parameters:
// Width
// Width of texture
// Height
// Height of texture
// NumCoeffs
// Number of coefficients per sample location (order^2 for SH)
// NumChannels
// Number of color channels to represent (1 or 3)
// ppBuffer
// Buffer that will be allocated
//
//============================================================================
HRESULT WINAPI
D3DXCreatePRTBufferTex(
UINT Width,
UINT Height,
UINT NumCoeffs,
UINT NumChannels,
LPD3DXPRTBUFFER* ppBuffer);
//============================================================================
//
// D3DXLoadPRTBufferFromFile:
// --------------------
// Loads a PRT buffer that has been saved to disk.
//
// Parameters:
// pFilename
// Name of the file to load
// ppBuffer
// Buffer that will be allocated
//
//============================================================================
HRESULT WINAPI
D3DXLoadPRTBufferFromFileA(
LPCSTR pFilename,
LPD3DXPRTBUFFER* ppBuffer);
HRESULT WINAPI
D3DXLoadPRTBufferFromFileW(
LPCWSTR pFilename,
LPD3DXPRTBUFFER* ppBuffer);
#ifdef UNICODE
#define D3DXLoadPRTBufferFromFile D3DXLoadPRTBufferFromFileW
#else
#define D3DXLoadPRTBufferFromFile D3DXLoadPRTBufferFromFileA
#endif
//============================================================================
//
// D3DXSavePRTBufferToFile:
// --------------------
// Saves a PRTBuffer to disk.
//
// Parameters:
// pFilename
// Name of the file to save
// pBuffer
// Buffer that will be saved
//
//============================================================================
HRESULT WINAPI
D3DXSavePRTBufferToFileA(
LPCSTR pFileName,
LPD3DXPRTBUFFER pBuffer);
HRESULT WINAPI
D3DXSavePRTBufferToFileW(
LPCWSTR pFileName,
LPD3DXPRTBUFFER pBuffer);
#ifdef UNICODE
#define D3DXSavePRTBufferToFile D3DXSavePRTBufferToFileW
#else
#define D3DXSavePRTBufferToFile D3DXSavePRTBufferToFileA
#endif
//============================================================================
//
// D3DXLoadPRTCompBufferFromFile:
// --------------------
// Loads a PRTComp buffer that has been saved to disk.
//
// Parameters:
// pFilename
// Name of the file to load
// ppBuffer
// Buffer that will be allocated
//
//============================================================================
HRESULT WINAPI
D3DXLoadPRTCompBufferFromFileA(
LPCSTR pFilename,
LPD3DXPRTCOMPBUFFER* ppBuffer);
HRESULT WINAPI
D3DXLoadPRTCompBufferFromFileW(
LPCWSTR pFilename,
LPD3DXPRTCOMPBUFFER* ppBuffer);
#ifdef UNICODE
#define D3DXLoadPRTCompBufferFromFile D3DXLoadPRTCompBufferFromFileW
#else
#define D3DXLoadPRTCompBufferFromFile D3DXLoadPRTCompBufferFromFileA
#endif
//============================================================================
//
// D3DXSavePRTCompBufferToFile:
// --------------------
// Saves a PRTCompBuffer to disk.
//
// Parameters:
// pFilename
// Name of the file to save
// pBuffer
// Buffer that will be saved
//
//============================================================================
HRESULT WINAPI
D3DXSavePRTCompBufferToFileA(
LPCSTR pFileName,
LPD3DXPRTCOMPBUFFER pBuffer);
HRESULT WINAPI
D3DXSavePRTCompBufferToFileW(
LPCWSTR pFileName,
LPD3DXPRTCOMPBUFFER pBuffer);
#ifdef UNICODE
#define D3DXSavePRTCompBufferToFile D3DXSavePRTCompBufferToFileW
#else
#define D3DXSavePRTCompBufferToFile D3DXSavePRTCompBufferToFileA
#endif
//============================================================================
//
// D3DXCreatePRTCompBuffer:
// --------------------
// Compresses a PRT buffer (vertex or texel)
//
// Parameters:
// D3DXSHCOMPRESSQUALITYTYPE
// Quality of compression - low is faster (computes PCA per voronoi cluster)
// high is slower but better quality (clusters based on distance to affine subspace)
// NumClusters
// Number of clusters to compute
// NumPCA
// Number of basis vectors to compute
// ppBufferIn
// Buffer that will be compressed
// ppBufferOut
// Compressed buffer that will be created
//
//============================================================================
HRESULT WINAPI
D3DXCreatePRTCompBuffer(
D3DXSHCOMPRESSQUALITYTYPE Quality,
UINT NumClusters,
UINT NumPCA,
LPD3DXPRTBUFFER pBufferIn,
LPD3DXPRTCOMPBUFFER *ppBufferOut
);
//============================================================================
//
// D3DXCreateTextureGutterHelper:
// --------------------
// Generates a "GutterHelper" for a given set of meshes and texture
// resolution
//
// Parameters:
// Width
// Width of texture
// Height
// Height of texture
// pMesh
// Mesh that represents the scene
// GutterSize
// Number of texels to over rasterize in texture space
// this should be at least 1.0
// ppBuffer
// GutterHelper that will be created
//
//============================================================================
HRESULT WINAPI
D3DXCreateTextureGutterHelper(
UINT Width,
UINT Height,
LPD3DXMESH pMesh,
FLOAT GutterSize,
LPD3DXTEXTUREGUTTERHELPER* ppBuffer);
//============================================================================
//
// D3DXCreatePRTEngine:
// --------------------
// Computes a PRTEngine which can efficiently generate PRT simulations
// of a scene
//
// Parameters:
// pMesh
// Mesh that represents the scene - must have an AttributeTable
// where vertices are in a unique attribute.
// ExtractUVs
// Set this to true if textures are going to be used for albedos
// or to store PRT vectors
// pBlockerMesh
// Optional mesh that just blocks the scene
// ppEngine
// PRTEngine that will be created
//
//============================================================================
HRESULT WINAPI
D3DXCreatePRTEngine(
LPD3DXMESH pMesh,
BOOL ExtractUVs,
LPD3DXMESH pBlockerMesh,
LPD3DXPRTENGINE* ppEngine);
//============================================================================
//
// D3DXConcatenateMeshes:
// --------------------
// Concatenates a group of meshes into one common mesh. This can optionaly transform
// each sub mesh or its texture coordinates. If no DECL is given it will
// generate a union of all of the DECL's of the sub meshes, promoting channels
// and types if neccesary. It will create an AttributeTable if possible, one can
// call OptimizeMesh with attribute sort and compacting enabled to ensure this.
//
// Parameters:
// ppMeshes
// Array of pointers to meshes that can store PRT vectors
// NumMeshes
// Number of meshes
// Options
// Passed through to D3DXCreateMesh
// pGeomXForms
// [optional] Each sub mesh is transformed by the corresponding
// matrix if this array is supplied
// pTextureXForms
// [optional] UV coordinates for each sub mesh are transformed
// by corresponding matrix if supplied
// pDecl
// [optional] Only information in this DECL is used when merging
// data
// pD3DDevice
// D3D device that is used to create the new mesh
// ppMeshOut
// Mesh that will be created
//
//============================================================================
HRESULT WINAPI
D3DXConcatenateMeshes(
LPD3DXMESH *ppMeshes,
UINT NumMeshes,
DWORD Options,
CONST D3DXMATRIX *pGeomXForms,
CONST D3DXMATRIX *pTextureXForms,
CONST D3DVERTEXELEMENT9 *pDecl,
LPDIRECT3DDEVICE9 pD3DDevice,
LPD3DXMESH *ppMeshOut);
//============================================================================
//
// D3DXSHPRTCompSuperCluster:
// --------------------------
// Used with compressed results of D3DXSHPRTSimulation.
// Generates "super clusters" - groups of clusters that can be drawn in
// the same draw call. A greedy algorithm that minimizes overdraw is used
// to group the clusters.
//
// Parameters:
// pClusterIDs
// NumVerts cluster ID's (extracted from a compressed buffer)
// pScene
// Mesh that represents composite scene passed to the simulator
// MaxNumClusters
// Maximum number of clusters allocated per super cluster
// NumClusters
// Number of clusters computed in the simulator
// pSuperClusterIDs
// Array of length NumClusters, contains index of super cluster
// that corresponding cluster was assigned to
// pNumSuperClusters
// Returns the number of super clusters allocated
//
//============================================================================
HRESULT WINAPI
D3DXSHPRTCompSuperCluster(
UINT *pClusterIDs,
LPD3DXMESH pScene,
UINT MaxNumClusters,
UINT NumClusters,
UINT *pSuperClusterIDs,
UINT *pNumSuperClusters);
//============================================================================
//
// D3DXSHPRTCompSplitMeshSC:
// -------------------------
// Used with compressed results of the vertex version of the PRT simulator.
// After D3DXSHRTCompSuperCluster has been called this function can be used
// to split the mesh into a group of faces/vertices per super cluster.
// Each super cluster contains all of the faces that contain any vertex
// classified in one of its clusters. All of the vertices connected to this
// set of faces are also included with the returned array ppVertStatus
// indicating whether or not the vertex belongs to the supercluster.
//
// Parameters:
// pClusterIDs
// NumVerts cluster ID's (extracted from a compressed buffer)
// NumVertices
// Number of vertices in original mesh
// NumClusters
// Number of clusters (input parameter to compression)
// pSuperClusterIDs
// Array of size NumClusters that will contain super cluster ID's (from
// D3DXSHCompSuerCluster)
// NumSuperClusters
// Number of superclusters allocated in D3DXSHCompSuerCluster
// pInputIB
// Raw index buffer for mesh - format depends on bInputIBIs32Bit
// InputIBIs32Bit
// Indicates whether the input index buffer is 32-bit (otherwise 16-bit
// is assumed)
// NumFaces
// Number of faces in the original mesh (pInputIB is 3 times this length)
// ppIBData
// LPD3DXBUFFER holds raw index buffer that will contain the resulting split faces.
// Format determined by bIBIs32Bit. Allocated by function
// pIBDataLength
// Length of ppIBData, assigned in function
// OutputIBIs32Bit
// Indicates whether the output index buffer is to be 32-bit (otherwise
// 16-bit is assumed)
// ppFaceRemap
// LPD3DXBUFFER mapping of each face in ppIBData to original faces. Length is
// *pIBDataLength/3. Optional paramter, allocated in function
// ppVertData
// LPD3DXBUFFER contains new vertex data structure. Size of pVertDataLength
// pVertDataLength
// Number of new vertices in split mesh. Assigned in function
// pSCClusterList
// Array of length NumClusters which pSCData indexes into (Cluster* fields)
// for each SC, contains clusters sorted by super cluster
// pSCData
// Structure per super cluster - contains indices into ppIBData,
// pSCClusterList and ppVertData
//
//============================================================================
HRESULT WINAPI
D3DXSHPRTCompSplitMeshSC(
UINT *pClusterIDs,
UINT NumVertices,
UINT NumClusters,
UINT *pSuperClusterIDs,
UINT NumSuperClusters,
LPVOID pInputIB,
BOOL InputIBIs32Bit,
UINT NumFaces,
LPD3DXBUFFER *ppIBData,
UINT *pIBDataLength,
BOOL OutputIBIs32Bit,
LPD3DXBUFFER *ppFaceRemap,
LPD3DXBUFFER *ppVertData,
UINT *pVertDataLength,
UINT *pSCClusterList,
D3DXSHPRTSPLITMESHCLUSTERDATA *pSCData);
#ifdef __cplusplus
}
#endif //__cplusplus
//////////////////////////////////////////////////////////////////////////////
//
// Definitions of .X file templates used by mesh load/save functions
// that are not RM standard
//
//////////////////////////////////////////////////////////////////////////////
// {3CF169CE-FF7C-44ab-93C0-F78F62D172E2}
DEFINE_GUID(DXFILEOBJ_XSkinMeshHeader,
0x3cf169ce, 0xff7c, 0x44ab, 0x93, 0xc0, 0xf7, 0x8f, 0x62, 0xd1, 0x72, 0xe2);
// {B8D65549-D7C9-4995-89CF-53A9A8B031E3}
DEFINE_GUID(DXFILEOBJ_VertexDuplicationIndices,
0xb8d65549, 0xd7c9, 0x4995, 0x89, 0xcf, 0x53, 0xa9, 0xa8, 0xb0, 0x31, 0xe3);
// {A64C844A-E282-4756-8B80-250CDE04398C}
DEFINE_GUID(DXFILEOBJ_FaceAdjacency,
0xa64c844a, 0xe282, 0x4756, 0x8b, 0x80, 0x25, 0xc, 0xde, 0x4, 0x39, 0x8c);
// {6F0D123B-BAD2-4167-A0D0-80224F25FABB}
DEFINE_GUID(DXFILEOBJ_SkinWeights,
0x6f0d123b, 0xbad2, 0x4167, 0xa0, 0xd0, 0x80, 0x22, 0x4f, 0x25, 0xfa, 0xbb);
// {A3EB5D44-FC22-429d-9AFB-3221CB9719A6}
DEFINE_GUID(DXFILEOBJ_Patch,
0xa3eb5d44, 0xfc22, 0x429d, 0x9a, 0xfb, 0x32, 0x21, 0xcb, 0x97, 0x19, 0xa6);
// {D02C95CC-EDBA-4305-9B5D-1820D7704BBF}
DEFINE_GUID(DXFILEOBJ_PatchMesh,
0xd02c95cc, 0xedba, 0x4305, 0x9b, 0x5d, 0x18, 0x20, 0xd7, 0x70, 0x4b, 0xbf);
// {B9EC94E1-B9A6-4251-BA18-94893F02C0EA}
DEFINE_GUID(DXFILEOBJ_PatchMesh9,
0xb9ec94e1, 0xb9a6, 0x4251, 0xba, 0x18, 0x94, 0x89, 0x3f, 0x2, 0xc0, 0xea);
// {B6C3E656-EC8B-4b92-9B62-681659522947}
DEFINE_GUID(DXFILEOBJ_PMInfo,
0xb6c3e656, 0xec8b, 0x4b92, 0x9b, 0x62, 0x68, 0x16, 0x59, 0x52, 0x29, 0x47);
// {917E0427-C61E-4a14-9C64-AFE65F9E9844}
DEFINE_GUID(DXFILEOBJ_PMAttributeRange,
0x917e0427, 0xc61e, 0x4a14, 0x9c, 0x64, 0xaf, 0xe6, 0x5f, 0x9e, 0x98, 0x44);
// {574CCC14-F0B3-4333-822D-93E8A8A08E4C}
DEFINE_GUID(DXFILEOBJ_PMVSplitRecord,
0x574ccc14, 0xf0b3, 0x4333, 0x82, 0x2d, 0x93, 0xe8, 0xa8, 0xa0, 0x8e, 0x4c);
// {B6E70A0E-8EF9-4e83-94AD-ECC8B0C04897}
DEFINE_GUID(DXFILEOBJ_FVFData,
0xb6e70a0e, 0x8ef9, 0x4e83, 0x94, 0xad, 0xec, 0xc8, 0xb0, 0xc0, 0x48, 0x97);
// {F752461C-1E23-48f6-B9F8-8350850F336F}
DEFINE_GUID(DXFILEOBJ_VertexElement,
0xf752461c, 0x1e23, 0x48f6, 0xb9, 0xf8, 0x83, 0x50, 0x85, 0xf, 0x33, 0x6f);
// {BF22E553-292C-4781-9FEA-62BD554BDD93}
DEFINE_GUID(DXFILEOBJ_DeclData,
0xbf22e553, 0x292c, 0x4781, 0x9f, 0xea, 0x62, 0xbd, 0x55, 0x4b, 0xdd, 0x93);
// {F1CFE2B3-0DE3-4e28-AFA1-155A750A282D}
DEFINE_GUID(DXFILEOBJ_EffectFloats,
0xf1cfe2b3, 0xde3, 0x4e28, 0xaf, 0xa1, 0x15, 0x5a, 0x75, 0xa, 0x28, 0x2d);
// {D55B097E-BDB6-4c52-B03D-6051C89D0E42}
DEFINE_GUID(DXFILEOBJ_EffectString,
0xd55b097e, 0xbdb6, 0x4c52, 0xb0, 0x3d, 0x60, 0x51, 0xc8, 0x9d, 0xe, 0x42);
// {622C0ED0-956E-4da9-908A-2AF94F3CE716}
DEFINE_GUID(DXFILEOBJ_EffectDWord,
0x622c0ed0, 0x956e, 0x4da9, 0x90, 0x8a, 0x2a, 0xf9, 0x4f, 0x3c, 0xe7, 0x16);
// {3014B9A0-62F5-478c-9B86-E4AC9F4E418B}
DEFINE_GUID(DXFILEOBJ_EffectParamFloats,
0x3014b9a0, 0x62f5, 0x478c, 0x9b, 0x86, 0xe4, 0xac, 0x9f, 0x4e, 0x41, 0x8b);
// {1DBC4C88-94C1-46ee-9076-2C28818C9481}
DEFINE_GUID(DXFILEOBJ_EffectParamString,
0x1dbc4c88, 0x94c1, 0x46ee, 0x90, 0x76, 0x2c, 0x28, 0x81, 0x8c, 0x94, 0x81);
// {E13963BC-AE51-4c5d-B00F-CFA3A9D97CE5}
DEFINE_GUID(DXFILEOBJ_EffectParamDWord,
0xe13963bc, 0xae51, 0x4c5d, 0xb0, 0xf, 0xcf, 0xa3, 0xa9, 0xd9, 0x7c, 0xe5);
// {E331F7E4-0559-4cc2-8E99-1CEC1657928F}
DEFINE_GUID(DXFILEOBJ_EffectInstance,
0xe331f7e4, 0x559, 0x4cc2, 0x8e, 0x99, 0x1c, 0xec, 0x16, 0x57, 0x92, 0x8f);
// {9E415A43-7BA6-4a73-8743-B73D47E88476}
DEFINE_GUID(DXFILEOBJ_AnimTicksPerSecond,
0x9e415a43, 0x7ba6, 0x4a73, 0x87, 0x43, 0xb7, 0x3d, 0x47, 0xe8, 0x84, 0x76);
// {7F9B00B3-F125-4890-876E-1CFFBF697C4D}
DEFINE_GUID(DXFILEOBJ_CompressedAnimationSet,
0x7f9b00b3, 0xf125, 0x4890, 0x87, 0x6e, 0x1c, 0x42, 0xbf, 0x69, 0x7c, 0x4d);
#pragma pack(push, 1)
typedef struct _XFILECOMPRESSEDANIMATIONSET
{
DWORD CompressedBlockSize;
FLOAT TicksPerSec;
DWORD PlaybackType;
DWORD BufferLength;
} XFILECOMPRESSEDANIMATIONSET;
#pragma pack(pop)
#define XSKINEXP_TEMPLATES \
"xof 0303txt 0032\
template XSkinMeshHeader \
{ \
<3CF169CE-FF7C-44ab-93C0-F78F62D172E2> \
WORD nMaxSkinWeightsPerVertex; \
WORD nMaxSkinWeightsPerFace; \
WORD nBones; \
} \
template VertexDuplicationIndices \
{ \
<B8D65549-D7C9-4995-89CF-53A9A8B031E3> \
DWORD nIndices; \
DWORD nOriginalVertices; \
array DWORD indices[nIndices]; \
} \
template FaceAdjacency \
{ \
<A64C844A-E282-4756-8B80-250CDE04398C> \
DWORD nIndices; \
array DWORD indices[nIndices]; \
} \
template SkinWeights \
{ \
<6F0D123B-BAD2-4167-A0D0-80224F25FABB> \
STRING transformNodeName; \
DWORD nWeights; \
array DWORD vertexIndices[nWeights]; \
array float weights[nWeights]; \
Matrix4x4 matrixOffset; \
} \
template Patch \
{ \
<A3EB5D44-FC22-429D-9AFB-3221CB9719A6> \
DWORD nControlIndices; \
array DWORD controlIndices[nControlIndices]; \
} \
template PatchMesh \
{ \
<D02C95CC-EDBA-4305-9B5D-1820D7704BBF> \
DWORD nVertices; \
array Vector vertices[nVertices]; \
DWORD nPatches; \
array Patch patches[nPatches]; \
[ ... ] \
} \
template PatchMesh9 \
{ \
<B9EC94E1-B9A6-4251-BA18-94893F02C0EA> \
DWORD Type; \
DWORD Degree; \
DWORD Basis; \
DWORD nVertices; \
array Vector vertices[nVertices]; \
DWORD nPatches; \
array Patch patches[nPatches]; \
[ ... ] \
} " \
"template EffectFloats \
{ \
<F1CFE2B3-0DE3-4e28-AFA1-155A750A282D> \
DWORD nFloats; \
array float Floats[nFloats]; \
} \
template EffectString \
{ \
<D55B097E-BDB6-4c52-B03D-6051C89D0E42> \
STRING Value; \
} \
template EffectDWord \
{ \
<622C0ED0-956E-4da9-908A-2AF94F3CE716> \
DWORD Value; \
} " \
"template EffectParamFloats \
{ \
<3014B9A0-62F5-478c-9B86-E4AC9F4E418B> \
STRING ParamName; \
DWORD nFloats; \
array float Floats[nFloats]; \
} " \
"template EffectParamString \
{ \
<1DBC4C88-94C1-46ee-9076-2C28818C9481> \
STRING ParamName; \
STRING Value; \
} \
template EffectParamDWord \
{ \
<E13963BC-AE51-4c5d-B00F-CFA3A9D97CE5> \
STRING ParamName; \
DWORD Value; \
} \
template EffectInstance \
{ \
<E331F7E4-0559-4cc2-8E99-1CEC1657928F> \
STRING EffectFilename; \
[ ... ] \
} " \
"template AnimTicksPerSecond \
{ \
<9E415A43-7BA6-4a73-8743-B73D47E88476> \
DWORD AnimTicksPerSecond; \
} \
template CompressedAnimationSet \
{ \
<7F9B00B3-F125-4890-876E-1C42BF697C4D> \
DWORD CompressedBlockSize; \
FLOAT TicksPerSec; \
DWORD PlaybackType; \
DWORD BufferLength; \
array DWORD CompressedData[BufferLength]; \
} "
#define XEXTENSIONS_TEMPLATES \
"xof 0303txt 0032\
template FVFData \
{ \
<B6E70A0E-8EF9-4e83-94AD-ECC8B0C04897> \
DWORD dwFVF; \
DWORD nDWords; \
array DWORD data[nDWords]; \
} \
template VertexElement \
{ \
<F752461C-1E23-48f6-B9F8-8350850F336F> \
DWORD Type; \
DWORD Method; \
DWORD Usage; \
DWORD UsageIndex; \
} \
template DeclData \
{ \
<BF22E553-292C-4781-9FEA-62BD554BDD93> \
DWORD nElements; \
array VertexElement Elements[nElements]; \
DWORD nDWords; \
array DWORD data[nDWords]; \
} \
template PMAttributeRange \
{ \
<917E0427-C61E-4a14-9C64-AFE65F9E9844> \
DWORD iFaceOffset; \
DWORD nFacesMin; \
DWORD nFacesMax; \
DWORD iVertexOffset; \
DWORD nVerticesMin; \
DWORD nVerticesMax; \
} \
template PMVSplitRecord \
{ \
<574CCC14-F0B3-4333-822D-93E8A8A08E4C> \
DWORD iFaceCLW; \
DWORD iVlrOffset; \
DWORD iCode; \
} \
template PMInfo \
{ \
<B6C3E656-EC8B-4b92-9B62-681659522947> \
DWORD nAttributes; \
array PMAttributeRange attributeRanges[nAttributes]; \
DWORD nMaxValence; \
DWORD nMinLogicalVertices; \
DWORD nMaxLogicalVertices; \
DWORD nVSplits; \
array PMVSplitRecord splitRecords[nVSplits]; \
DWORD nAttributeMispredicts; \
array DWORD attributeMispredicts[nAttributeMispredicts]; \
} "
#endif //__D3DX9MESH_H__