1
0
Fork 0
mirror of https://git.rip/DMCA_FUCKER/re3.git synced 2025-01-07 09:05:40 +00:00
re3/sdk/rwsdk/include/d3d8/rtltmap.h
2020-08-02 19:36:50 +03:00

602 lines
27 KiB
C

/**
* \defgroup rtltmap RtLtMap
* \ingroup rttool
*
* Lightmap Generation Toolkit for RenderWare.
*/
#ifndef RTLTMAP_H
#define RTLTMAP_H
/*===========================================================================*
*--- Includes --------------------------------------------------------------*
*===========================================================================*/
#include "rwcore.h"
#include "rpworld.h"
#include "rpltmap.h"
/**
* \ingroup rtltmap
* \typedef RtLtMapIlluminateSampleCallBack
* \ref RtLtMapIlluminateSampleCallBack is the callback to be called, from
* within \ref RtLtMapIlluminate, for groups of samples in the objects
* currently being illuminated.
*
* For lightmapped objects, samples are grouped on a per-polygon basis and
* for vertex-lit objects, samples are grouped on a per-object basis (see
* \ref RtLtMapObjectFlags).
*
* This callback will receive an array of color values to fill in, each
* representing one sample in the current object - this may correspond to
* a texel in the current object's lightmap or the prelight colour of a
* vertex, depending on whether the object is lightmapped and/or vertex-lit.
* It will receive positions (in world-space) for each sample and the normal
* vector (again, in world-space) of each sample (normals are interpolated
* across polygons for non-flat-shaded materials. See \ref RtLtMapMaterialFlags).
* For lightmap samples (not vertex-lighting samples), it will receive
* barycentric coordinates within the current polygon. It will also receive
* a list of RpLights affecting the current object.
*
* The barycentric coordinates may be used, for example, to allow a callback
* to easily import existing lighting data (e.g from previously generated
* lightmaps in a different format, or from an art package with lighting
* functionality).
*
* NOTE: The alpha channel of the RwRGBA results array must NOT be modified.
* These values are used internally and their modification may result in
* unwanted visual artifacts in the resulting lighting solution.
*
* The default RtLtMapIlluminateSampleCallBacks supplied with RtLtMap is
* \ref RtLtMapDefaultSampleCallBack. This callback performs point and area
* lighting (the area lights use are those passed to \ref RtLtMapIlluminate).
*
* \param results A pointer to an array of \ref RwRGBA sample color values
* \param samplePositions A pointer to an array of \ref RwV3d values specifying the
* world-space positions of each of the samples in the results array
* \param baryCoords A pointer to an array of \ref RwV3d values specifying the
* barycentric coordinates (within the current polygon) of
* each of the samples in the results array
* \param numSamples The length of the results, samplePositions, baryCoords and normals arrays
* \param lights An array of pointers to \ref RpLight's affecting the current object
* \param numLights The length of the lights array
* \param normals A pointer to an array of \ref RwV3d values specifying the
* world-space, unit normals of each of the samples in the results array
*
* \return A pointer to the results array on success, NULL otherwise
*
* \see RtLtMapIlluminate
* \see RtLtMapIlluminateVisCallBack
* \see RtLtMapIlluminateProgressCallBack
*/
typedef RwRGBA *(*RtLtMapIlluminateSampleCallBack)(RwRGBA *results,
RwV3d *samplePositions,
RwV3d *baryCoords,
RwUInt32 numSamples,
RpLight **lights,
RwUInt32 numLights,
RwV3d *normals);
/**
* \ingroup rtltmap
* \typedef RtLtMapIlluminateVisCallBack
* \ref RtLtMapIlluminateVisCallBack is the callback to be called, from
* within \ref RtLtMapIlluminate, to determine the visibility between a
* sample and a light.
*
* This callback is called for all samples in the current
* \ref RtLtMapLightingSession and for each light source which may
* potentially affect each of those samples (this may not be all the
* lights in the scene, as some hierarchical culling is performed).
* Each sample may represent a texel in the current object's lightmap
* or the prelight color of a vertex, depending on whether the object
* is lightmapped and/or vertex-lit (see \ref RtLtMapObjectFlags).
*
* The callback will receive a pointer to the world of the current
* \ref RtLtMapLightingSession (this may be used to perform intersection
* tests), the world-space position of the sample, the world-space
* position of the light, a pointer to a light and a pointer to an
* \ref RwRGBAReal result value.
*
* If the light pointer is NULL, this means that the current light
* is an area light (as opposed to an \ref RpLight), of an internal
* format. The area lights use are those passed to \ref RtLtMapIlluminate.
*
* The callback should return FALSE to signify that the light is wholly
* occluded w.r.t the sample position, otherwise it should return TRUE.
* Partial degrees of (color-frequency-dependent) occlusion may be
* expressed by modifying the RwRGBAReal value. This defaults to bright
* white but may be reduced to signify that the light from the light
* source should be attenuated. This could be used to take into account
* light-filtering objects in the scene (such as coloured glass or fog).
*
* The default RtLtMapIlluminateVisCallBack supplied with RtLtMap is
* \ref RtLtMapDefaultVisCallBack. This callback performs visibility
* tests using the line-intersection tests from \ref rtintersect. It tests
* for occlusion by RpWorldSectors and RpAtomics and it respects the
* relevant \ref RtLtMapObjectFlags and \ref RtLtMapMaterialFlags but it
* does not filter light; visibility is determined to be either one or zero.
*
* \param world The world of the current RtLtMapLightingSession
* \param result An RwRGBAReal value to attentuate this light's
* contribution to the current sample
* \param samplePos The world-space positiuon of the sample
* \param lightPos The world-space positiuon of the light
* \param light A pointer to the light (NULL if it is an are light)
*
* \return TRUE if the light is visible from the sample, FALSE if it is occluded
*
* \see RtLtMapIlluminate
* \see RtLtMapIlluminateSampleCallBack
* \see RtLtMapIlluminateProgressCallBack
*/
typedef RwBool (*RtLtMapIlluminateVisCallBack)(RpWorld *world,
RwRGBAReal *result,
RwV3d *samplePos,
RwV3d *lightPos,
RpLight *light);
/**
* \ingroup rtltmap
* \typedef RtLtMapIlluminateProgressCallBack
* \ref RtLtMapIlluminateProgressCallBack is the callback to be called, from
* within \ref RtLtMapIlluminate, to allow a user to track lighting progress.
*
* The progress callback will be called at several stages during lighting,
* with a different 'message' parameter value used at each stage (see
* \ref RtLtMapProgressMessage). It will be called at the very start of
* lighting (for a given \ref RtLtMapLightingSession), before any samples
* are lit. It will also be called at the very end of lighting, after all
* samples have been lit. It will be called before and after each lighting
* 'slice' (see \ref RtLtMapIlluminate) and also after each group of
* samples have been lit.
*
* For lightmapped objects, samples are grouped on a per-polygon basis and
* for vertex-lit objects, samples are grouped on a per-object basis (see
* \ref RtLtMapObjectFlags).
*
* The progress callback will receive a RwReal value specifying the percentage
* of samples already lit in the current \ref RtLtMapLightingSession (see
* \ref RtLtMapLightingSessionGetNumSamples).
*
* By returning FALSE, the progress callback may cause early termination of
* the current lighting 'slice' (this may be used, for example, to keep
* the time spent lighting each slice fairly constant).
*
* There is no default progress callback supplied with RtLtMap.
*
* \param message A \ref RtLtMapProgressMessage identifying the stage
* of the current call to the progress callback
* \param value The percentage of samples already lit in the
* current \ref RtLtMapLightingSession
*
* \return FALSE to immediately terminate lighting, otherwise TRUE
*
* \see RtLtMapIlluminate
* \see RtLtMapIlluminateSampleCallBack
* \see RtLtMapIlluminateVisCallBack
*/
typedef RwBool (*RtLtMapIlluminateProgressCallBack)(RwInt32 message,
RwReal value);
/**
* \ingroup rtltmap
* \ref RtLtMapProgressMessage is an enumerated type identifying the different
* stages at which the \ref RtLtMapIlluminateProgressCallBack may be called
* from within \ref RtLtMapIlluminate.
*
* \see RtLtMapIlluminateProgressCallBack
* \see RtLtMapIlluminate
*/
enum RtLtMapProgressMessage
{
rtLTMAPPROGRESSNAMESSAGE = 0,
rtLTMAPPROGRESSSTART = 1, /**< This is issued at the beginning of
* an incremental lighting session */
rtLTMAPPROGRESSSTARTSLICE = 2, /**< This is issued at the beginning of every
* slice in an incremental lighting session */
rtLTMAPPROGRESSUPDATE = 3, /**< This is issued after the lighting of each
* lightmapped triangle or vertex-lit object */
rtLTMAPPROGRESSENDSLICE = 4, /**< This is issued at the end of every slice
* in an incremental lighting session */
rtLTMAPPROGRESSEND = 5, /**< This is issued at the end of an
* incremental lighting session */
rtLTMAPPROGRESSFORCEENUMSIZEINT = 0x7FFFFFFF
};
typedef enum RtLtMapProgressMessage RtLtMapProgressMessage;
typedef struct RtLtMapLightingSession RtLtMapLightingSession;
/**
* \ingroup rtltmap
* \typedef RtLtMapLightingSession
* The \ref RtLtMapLightingSession structure holds information to be passed to
* \ref RtLtMapIlluminate. It is used to parameterize the lighting process.
*
* The \ref RtLtMapLightingSession structure encapsulates a set of objects and
* keeps track of the proportion of samples, within that set, that have already
* been lit by calls to \ref RtLtMapIlluminate. Each call performs lighting for
* one 'slice' of the whole 'session'. If the camera member is non-NULL, it is
* important that the camera is not moved between lighting slices.
*
* The \ref RtLtMapLightingSession is also passed to
* \ref RtLtMapLightMapsCreate, \ref RtLtMapLightMapsClear,
* \ref RtLtMapLightMapsDestroy and \ref RtLtMapAreaLightGroupCreate,
* though not all of the session structure's member will be used in
* each of these cases.
*
* \see RtLtMapIlluminate
* \see RtLtMapLightMapsCreate
* \see RtLtMapLightMapsClear
* \see RtLtMapLightMapsDestroy
* \see RtLtMapAreaLightGroupCreate
*/
struct RtLtMapLightingSession
{
RpWorld *world; /**< This world is that in which collisions are performed
* during illumination (for the purposes of lighting
* visibility determination) */
RwCamera *camera; /**< An optional pointer to a camera. The camera's frustum
* may be used to cull objects and/or triangles from the
* set of those to be processed. */
RpWorldSector **sectorList; /**< An optional array of \ref RpWorldSector pointers,
* specifying which sectors in the world to light. If
* this is NULL, then all sectors in the world (or those
* inside the optional camera's frustum) will be lit. */
RwInt32 numSectors; /**< The length of the sectorList array. If this is set to
* '-1' then none of the sectors in the world will be lit. */
RpAtomic **atomicList; /**< An optional array of \ref RpAtomic pointers,
* specifying which atomics to light. If this is NULL
* then all atomics in the world (or those inside the
* optional camera's frustum) will be lit. */
RwInt32 numAtomics; /**< The length of the atomicList array. If this is set to
* '-1' then none of the atomics in the world will be lit. */
RwUInt32 startSample; /**< Lighting for the current 'slice' should begin with this
* sample. It is the user's responsibility to increment this
* value after each slice. Note that partial lighting is
* quantized to be per-polygon (for lightmapped objects).
* startSample will always be rounded down, not up. */
RwUInt32 numSamples; /**< This specifies how many lightmap samples should be lit.
* If it is left zero then all samples in the current set
* of objects will be lit. Note that partial lighting is
* quantized to be per-polygon (for lightmapped objects).
* numSamples will always be rounded up, not down. */
RwUInt32 totalSamples;/**< This specifies how many lightmap samples will be lit in
* total for the world specified (this is filled in by
* \ref RtLtMapIlluminate, not the calling function). */
RtLtMapIlluminateSampleCallBack sampleCallBack; /**< A \ref RtLtMapIlluminateSampleCallBack
* to use during lighting. If this is left
* NULL, the default callback will be used. */
RtLtMapIlluminateVisCallBack visCallBack; /**< A \ref RtLtMapIlluminateVisCallBack
* to use during lighting. If this is left
* NULL, the default callback will be used. */
RtLtMapIlluminateProgressCallBack progressCallBack; /**< A \ref RtLtMapIlluminateProgressCallBack
* to use during lighting. If this is left
* NULL, no progress callback will be used. */
};
/**
* \ingroup rtltmap
* \ref RtLtMapMaterialFlags is an enumerated type specifying the different
* lightmap-related flags which may be applied to materials. These values
* will be taken into consideration within \ref RtLtMapIlluminate.
*
* \see RtLtMapMaterialGetFlags
* \see RtLtMapMaterialSetFlags
* \see RtLtMapMaterialGetAreaLightColor
* \see RtLtMapMaterialSetAreaLightColor
* \see RtLtMapMaterialGetLightMapDensityModifier
* \see RtLtMapMaterialSetLightMapDensityModifier
* \see RtLtMapMaterialGetAreaLightDensityModifier
* \see RtLtMapMaterialSetAreaLightDensityModifier
* \see RtLtMapMaterialSetAreaLightRadiusModifier
* \see RtLtMapMaterialGetAreaLightRadiusModifier
* \see RtLtMapIlluminate
* \see RtLtMapAreaLightGroupCreate
* \see RtLtMapIlluminateVisCallBack
*/
enum RtLtMapMaterialFlags
{
rtLTMAPMATERIALNAFLAG = 0,
rtLTMAPMATERIALLIGHTMAP = 1, /**< This material should be lightmapped
* [for non-lightmapped materials within lightmapped objects,
* texel values will be set to (0, 0, 0) (or (255, 255, 255) if
* the rtLTMAPMATERIALAREALIGHT flag is present, so that light-
* emitting textures appear as bright as the light which they are
* emittering) and the mesh may be 'shrunk' in UV-space so as not
* to waste lightmap texels] */
rtLTMAPMATERIALAREALIGHT = 2, /**< This material is an area light emitter
* (see \ref RtLtMapAreaLightGroupCreate) */
rtLTMAPMATERIALNOSHADOW = 4, /**< This material does not block light */
rtLTMAPMATERIALSKY = 8, /**< This material blocks everything but directional
* lights, to allow sky polygons to occlude geometry
* and yet emit directional light (sky or sun light,
* being as if cast from an infinite distance) */
rtLTMAPMATERIALFLATSHADE = 16, /**< This material will be lit as if flat-shaded
* (polygon normals will be used during illumination) */
rtLTMAPMATERIALFLAGFORCEENUMSIZEINT = 0x7FFFFFFF
};
typedef enum RtLtMapMaterialFlags RtLtMapMaterialFlags;
/**
* \ingroup rtltmap
* \ref RtLtMapObjectFlags is an enumerated type specifying the different
* lightmap-related flags which may be applied to world sectors and
* atomics. These values will be taken into consideration within
* \ref RtLtMapLightMapsCreate and \ref RtLtMapIlluminate.
*
* \see RtLtMapAtomicGetFlags
* \see RtLtMapAtomicSetFlags
* \see RtLtMapWorldSectorGetFlags
* \see RtLtMapWorldSectorSetFlags
* \see RtLtMapLightMapsCreate
* \see RtLtMapIlluminate
* \see RtLtMapIlluminateVisCallBack
*/
enum RtLtMapObjectFlags
{
rtLTMAPOBJECTNAFLAG = 0,
rtLTMAPOBJECTLIGHTMAP = 1, /**< This object is to be lightmapped */
rtLTMAPOBJECTVERTEXLIGHT = 2, /**< This object's vertex prelight colours should
* be lit within \ref RtLtMapIlluminate. */
rtLTMAPOBJECTNOSHADOW = 4, /**< This object does not cast shadows (useful, for
* example, for moving objects for which dynamic
* shadows are to be rendered - such as doors) */
rtLTMAPOBJECTFLAGFORCEENUMSIZEINT = 0x7FFFFFFF
};
typedef enum RtLtMapObjectFlags RtLtMapObjectFlags;
/* Area-lighting stuff:*
***********************/
/**
* \ingroup rtltmap
* \typedef RtLtMapAreaLightGroup
* \ref RtLtMapAreaLightGroup is a structure which acts as a container
* for area lights created by a call to \ref RtLtMapAreaLightGroupCreate.
* The containers may be chained and passed to \ref RtLtMapIlluminate.
* Each container has an optional pointer to a RwFrame which is used to
* transform the contained area lights relative to the world of the current
* \ref RtLtMapLightingSession and relative to each other (such that, for
* example, lights from multiple worlds, which are connected by portals,
* or which are composed of atomics and not world sectors, may be used
* within a single call to \ref RtLtMapIlluminate).
*
* \see RtLtMapAreaLightGroupCreate
* \see RtLtMapAreaLightGroupDestroy
* \see RtLtMapIlluminate
* \see RtLtMapIlluminateVisCallBack
*/
typedef struct RtLtMapAreaLightGroup RtLtMapAreaLightGroup;
struct RtLtMapAreaLightGroup
{
RwSList *meshes; /**< A list of hierarchically-grouped area lights */
RwFrame *frame; /**< An (optional) pointer to a frame (owned by something else)
* whose LTM specifies the coordinate system of this container,
* relative to the world of the current \ref RtLtMapLightingSession. */
RtLtMapAreaLightGroup *next; /**< A pointer for chaining are light groups together */
};
/* Area light triangles are grouped by source mesh (this may change) */
typedef struct LtMapAreaLightMesh LtMapAreaLightMesh;
struct LtMapAreaLightMesh
{
RwUInt32 flags; /* To hold hierarchical visibility culling flags,
* relevant to the object/triangle *currently* being lit. */
RpMaterial *material; /* The emitter material, containing colour, etc */
RwSphere sphere; /* Each mesh has an associated center and radius */
RwReal ROI; /* Centred on the above sphere, the R.O.I. of the
* samples in this mesh (a conservative estimate) */
RwSList *triangles; /* A list of the area light triangles in this mesh */
};
/* Area light samples are grouped by source triangle */
typedef struct LtMapAreaLight LtMapAreaLight;
struct LtMapAreaLight
{
RwUInt16 flags; /* To hold hierarchical visibility culling flags,
* relevant to the object/triangle *currently* being lit. */
RwUInt16 numSamples; /* Number of area light samples in this triangle */
RwReal areaPerSample; /* (triangleArea / numSamples) for this triangle */
RwPlane plane; /* This 'area light' is a triangle, this is its plane. */
RwSphere sphere; /* This bounds the triangle's points in world-space (it's
* not worth storing 3 points, coarse culling is fine) */
RwV3d *lights; /* Array of area light sample positions (in world-space) */
};
#ifdef __cplusplus
extern "C"
{
#endif /* __cplusplus */
/* Lightmap creation functionality: */
extern RtLtMapLightingSession *
RtLtMapLightMapsCreate(RtLtMapLightingSession *session,
RwReal density, RwRGBA *color);
extern void
RtLtMapLightMapsDestroy(RtLtMapLightingSession *session);
extern RpAtomic *
RtLtMapAtomicLightMapDestroy(RpAtomic *atomic);
extern RpWorldSector *
RtLtMapWorldSectorLightMapDestroy(RpWorldSector *sector);
extern RwReal
RtLtMapGetVertexWeldThreshold(void);
extern RwBool
RtLtMapSetVertexWeldThreshold(RwReal threshold);
extern RwUInt32
RtLtMapLightMapGetDefaultSize(void);
extern RwBool
RtLtMapLightMapSetDefaultSize(RwUInt32 size);
extern RwUInt32
RtLtMapAtomicGetLightMapSize(RpAtomic *atomic);
extern RpAtomic *
RtLtMapAtomicSetLightMapSize(RpAtomic *atomic, RwUInt32 size);
extern RwUInt32
RtLtMapWorldSectorGetLightMapSize(RpWorldSector *sector);
extern RpWorldSector *
RtLtMapWorldSectorSetLightMapSize(RpWorldSector *sector, RwUInt32 size);
extern RwUInt32
RtLtMapAtomicGetFlags(RpAtomic *atomic);
extern RpAtomic *
RtLtMapAtomicSetFlags(RpAtomic *atomic, RwUInt32 flags);
extern RwUInt32
RtLtMapWorldSectorGetFlags(RpWorldSector *sector);
extern RpWorldSector *
RtLtMapWorldSectorSetFlags(RpWorldSector *sector, RwUInt32 flags);
/* Lightmap illumination functionality: */
extern RwUInt32
RtLtMapIlluminate(RtLtMapLightingSession *session,
RtLtMapAreaLightGroup *lights);
extern RwReal
RtLtMapGetSliverAreaThreshold(void);
extern RwBool
RtLtMapSetSliverAreaThreshold(RwReal threshold);
extern RwRGBA *
RtLtMapDefaultSampleCallBack(RwRGBA *results,
RwV3d *samplePositions,
RwV3d * __RWUNUSED__ baryCoords,
RwUInt32 numSamples,
RpLight **lights,
RwUInt32 numLights,
RwV3d *normals);
extern RwBool
RtLtMapDefaultVisCallBack(RpWorld *world,
RwRGBAReal __RWUNUSED__ *result,
RwV3d *samplePos,
RwV3d *lightPos,
RpLight __RWUNUSED__ *light);
extern RtLtMapLightingSession *
RtLtMapLightingSessionInitialize(RtLtMapLightingSession *session,
RpWorld *world);
extern RwInt32
RtLtMapLightingSessionGetNumSamples(RtLtMapLightingSession *session);
extern RwInt32
RtLtMapWorldSectorGetNumSamples(RpWorldSector *sector);
extern RwInt32
RtLtMapAtomicGetNumSamples(RpAtomic *atomic);
extern RtLtMapLightingSession *
RtLtMapImagesPurge(RtLtMapLightingSession *session);
extern RpAtomic *
RtLtMapAtomicImagePurge(RpAtomic *atomic);
extern RpWorldSector *
RtLtMapWorldSectorImagePurge(RpWorldSector *sector);
extern RtLtMapLightingSession *
RtLtMapLightMapsClear(RtLtMapLightingSession *session, RwRGBA *color);
extern RpAtomic *
RtLtMapAtomicLightMapClear(RpAtomic *atomic, RwRGBA *color);
extern RpWorldSector *
RtLtMapWorldSectorLightMapClear(RpWorldSector *sector, RwRGBA *color);
/* Material/area-lighting functionality: */
extern RtLtMapAreaLightGroup *
RtLtMapAreaLightGroupCreate(RtLtMapLightingSession *session, RwReal density);
extern RwBool
RtLtMapAreaLightGroupDestroy(RtLtMapAreaLightGroup *lights);
extern RwUInt32
RtLtMapMaterialGetFlags(RpMaterial *material);
extern RpMaterial *
RtLtMapMaterialSetFlags(RpMaterial *material, RwUInt32 flags);
extern RwReal
RtLtMapMaterialGetLightMapDensityModifier(RpMaterial *material);
extern RpMaterial *
RtLtMapMaterialSetLightMapDensityModifier(RpMaterial *material, RwReal modifier);
extern RwRGBA
RtLtMapMaterialGetAreaLightColor(RpMaterial *material);
extern RpMaterial *
RtLtMapMaterialSetAreaLightColor(RpMaterial *material, RwRGBA color);
extern RwReal
RtLtMapMaterialGetAreaLightDensityModifier(RpMaterial *material);
extern RpMaterial *
RtLtMapMaterialSetAreaLightDensityModifier(RpMaterial *material, RwReal modifier);
extern RwReal
RtLtMapMaterialGetAreaLightRadiusModifier(RpMaterial *material);
extern RpMaterial *
RtLtMapMaterialSetAreaLightRadiusModifier(RpMaterial *material, RwReal modifier);
extern RwUInt32
RtLtMapGetMaxAreaLightSamplesPerMesh(void);
extern RwBool
RtLtMapSetMaxAreaLightSamplesPerMesh(RwUInt32 maxSamples);
extern RwReal
RtLtMapGetAreaLightDensityModifier(void);
extern RwBool
RtLtMapSetAreaLightDensityModifier(RwReal modifier);
extern RwReal
RtLtMapGetAreaLightRadiusModifier(void);
extern RwBool
RtLtMapSetAreaLightRadiusModifier(RwReal modifier);
extern RwReal
RtLtMapGetAreaLightErrorCutoff(void);
extern RwBool
RtLtMapSetAreaLightErrorCutoff(RwReal tolerance);
/* Texture-saving functionality: */
extern RwTexDictionary *
RtLtMapTexDictionaryCreate(RtLtMapLightingSession *session);
extern const RwChar *
RtLtMapGetDefaultPrefixString(void);
extern RwBool
RtLtMapSetDefaultPrefixString(RwChar *string);
extern RwUInt32
RtLtMapGetLightMapCounter(void);
extern RwBool
RtLtMapSetLightMapCounter(RwUInt32 value);
#if (defined(SKY2_DRVMODEL_H) || defined(NULLSKY_DRVMODEL_H))
/* PS2-specific functionality: */
extern RwTexture *RtLtMapSkyLightMapMakeDarkMap(RwTexture *lightMap);
extern RwTexture *RtLtMapSkyBaseTextureProcess(RwTexture *texture);
extern RpAtomic *RtLtMapSkyAtomicBaseTexturesProcess(RpAtomic *atomic);
extern RpWorldSector *
RtLtMapSkyWorldSectorBaseTexturesProcess(RpWorldSector *sector);
extern RtLtMapLightingSession *
RtLtMapSkyBaseTexturesProcess(RtLtMapLightingSession *session);
#endif /* (defined(SKY2_DRVMODEL_H) || defined(NULLSKY_DRVMODEL_H)) */
#ifdef __cplusplus
}
#endif /* __cplusplus */
#endif /* RTLTMAP_H */