#include "common.h" #include "patcher.h" #include "Quaternion.h" // TODO: move more stuff into here void CMatrix::SetRotate(float xAngle, float yAngle, float zAngle) { float cX = Cos(xAngle); float sX = Sin(xAngle); float cY = Cos(yAngle); float sY = Sin(yAngle); float cZ = Cos(zAngle); float sZ = Sin(zAngle); m_matrix.right.x = cZ * cY - (sZ * sX) * sY; m_matrix.right.y = (cZ * sX) * sY + sZ * cY; m_matrix.right.z = -cX * sY; m_matrix.up.x = -sZ * cX; m_matrix.up.y = cZ * cX; m_matrix.up.z = sX; m_matrix.at.x = (sZ * sX) * cY + cZ * sY; m_matrix.at.y = sZ * sY - (cZ * sX) * cY; m_matrix.at.z = cX * cY; m_matrix.pos.x = 0.0f; m_matrix.pos.y = 0.0f; m_matrix.pos.z = 0.0f; } void CMatrix::Rotate(float x, float y, float z) { // TODO? do this directly without creating another matrix CMatrix rot; rot.SetRotate(x, y, z); *this = rot * *this; } void CMatrix::RotateX(float x) { Rotate(x, 0.0f, 0.0f); } void CMatrix::RotateZ(float z) { Rotate(0.0f, 0.0f, z); } void CMatrix::Reorthogonalise(void) { CVector &r = GetRight(); CVector &f = GetForward(); CVector &u = GetUp(); u = CrossProduct(r, f); u.Normalise(); r = CrossProduct(f, u); r.Normalise(); f = CrossProduct(u, r); } CMatrix& Invert(const CMatrix &src, CMatrix &dst) { // GTA handles this as a raw 4x4 orthonormal matrix // and trashes the RW flags, let's not do that // actual copy of librw code: RwMatrix *d = &dst.m_matrix; const RwMatrix *s = &src.m_matrix; d->right.x = s->right.x; d->right.y = s->up.x; d->right.z = s->at.x; d->up.x = s->right.y; d->up.y = s->up.y; d->up.z = s->at.y; d->at.x = s->right.z; d->at.y = s->up.z; d->at.z = s->at.z; d->pos.x = -(s->pos.x*s->right.x + s->pos.y*s->right.y + s->pos.z*s->right.z); d->pos.y = -(s->pos.x*s->up.x + s->pos.y*s->up.y + s->pos.z*s->up.z); d->pos.z = -(s->pos.x*s->at.x + s->pos.y*s->at.y + s->pos.z*s->at.z); d->flags = rwMATRIXTYPEORTHONORMAL; return dst; } CVector operator*(const CMatrix &mat, const CVector &vec) { return CVector( mat.m_matrix.right.x * vec.x + mat.m_matrix.up.x * vec.y + mat.m_matrix.at.x * vec.z + mat.m_matrix.pos.x, mat.m_matrix.right.y * vec.x + mat.m_matrix.up.y * vec.y + mat.m_matrix.at.y * vec.z + mat.m_matrix.pos.y, mat.m_matrix.right.z * vec.x + mat.m_matrix.up.z * vec.y + mat.m_matrix.at.z * vec.z + mat.m_matrix.pos.z); } CMatrix operator*(const CMatrix &m1, const CMatrix &m2) { CMatrix out; RwMatrix *dst = &out.m_matrix; const RwMatrix *src1 = &m1.m_matrix; const RwMatrix *src2 = &m2.m_matrix; dst->right.x = src1->right.x*src2->right.x + src1->up.x*src2->right.y + src1->at.x*src2->right.z; dst->right.y = src1->right.y*src2->right.x + src1->up.y*src2->right.y + src1->at.y*src2->right.z; dst->right.z = src1->right.z*src2->right.x + src1->up.z*src2->right.y + src1->at.z*src2->right.z; dst->up.x = src1->right.x*src2->up.x + src1->up.x*src2->up.y + src1->at.x*src2->up.z; dst->up.y = src1->right.y*src2->up.x + src1->up.y*src2->up.y + src1->at.y*src2->up.z; dst->up.z = src1->right.z*src2->up.x + src1->up.z*src2->up.y + src1->at.z*src2->up.z; dst->at.x = src1->right.x*src2->at.x + src1->up.x*src2->at.y + src1->at.x*src2->at.z; dst->at.y = src1->right.y*src2->at.x + src1->up.y*src2->at.y + src1->at.y*src2->at.z; dst->at.z = src1->right.z*src2->at.x + src1->up.z*src2->at.y + src1->at.z*src2->at.z; dst->pos.x = src1->right.x*src2->pos.x + src1->up.x*src2->pos.y + src1->at.x*src2->pos.z + src1->pos.x; dst->pos.y = src1->right.y*src2->pos.x + src1->up.y*src2->pos.y + src1->at.y*src2->pos.z + src1->pos.y; dst->pos.z = src1->right.z*src2->pos.x + src1->up.z*src2->pos.y + src1->at.z*src2->pos.z + src1->pos.z; return out; } const CVector Multiply3x3(const CMatrix &mat, const CVector &vec) { return CVector( mat.m_matrix.right.x * vec.x + mat.m_matrix.up.x * vec.y + mat.m_matrix.at.x * vec.z, mat.m_matrix.right.y * vec.x + mat.m_matrix.up.y * vec.y + mat.m_matrix.at.y * vec.z, mat.m_matrix.right.z * vec.x + mat.m_matrix.up.z * vec.y + mat.m_matrix.at.z * vec.z); } const CVector Multiply3x3(const CVector &vec, const CMatrix &mat) { return CVector( mat.m_matrix.right.x * vec.x + mat.m_matrix.right.y * vec.y + mat.m_matrix.right.z * vec.z, mat.m_matrix.up.x * vec.x + mat.m_matrix.up.y * vec.y + mat.m_matrix.up.z * vec.z, mat.m_matrix.at.x * vec.x + mat.m_matrix.at.y * vec.y + mat.m_matrix.at.z * vec.z); } void CQuaternion::Slerp(const CQuaternion &q1, const CQuaternion &q2, float theta, float invSin, float t) { if(theta == 0.0f) *this = q2; else{ float w1, w2; if(theta > PI/2){ theta = PI - theta; w1 = Sin((1.0f - t) * theta) * invSin; w2 = -Sin(t * theta) * invSin; }else{ w1 = Sin((1.0f - t) * theta) * invSin; w2 = Sin(t * theta) * invSin; } *this = w1*q1 + w2*q2; } } void CQuaternion::Get(RwMatrix *matrix) { float x2 = x+x; float y2 = y+y; float z2 = z+z; float x_2x = x * x2; float x_2y = x * y2; float x_2z = x * z2; float y_2y = y * y2; float y_2z = y * z2; float z_2z = z * z2; float w_2x = w * x2; float w_2y = w * y2; float w_2z = w * z2; matrix->right.x = 1.0f - (y_2y + z_2z); matrix->up.x = x_2y - w_2z; matrix->at.x = x_2z + w_2y; matrix->right.y = x_2y + w_2z; matrix->up.y = 1.0f - (x_2x + z_2z); matrix->at.y = y_2z - w_2x; matrix->right.z = x_2z - w_2y; matrix->up.z = y_2z + w_2x; matrix->at.z = 1.0f - (x_2x + y_2y); } STARTPATCHES InjectHook(0x4BA1C0, &CQuaternion::Slerp, PATCH_JUMP); InjectHook(0x4BA0D0, &CQuaternion::Get, PATCH_JUMP); ENDPATCHES