#include "common.h" #include "patcher.h" #include "Game.h" #include "General.h" #include "RenderBuffer.h" #include "SurfaceTable.h" #include "Collision.h" enum Direction { DIR_X_POS, DIR_X_NEG, DIR_Y_POS, DIR_Y_NEG, DIR_Z_POS, DIR_Z_NEG, }; eLevelName &CCollision::ms_collisionInMemory = *(eLevelName*)0x8F6250; CLinkList &CCollision::ms_colModelCache = *(CLinkList*)0x95CB58; #if 0 void CCollision::Init(void) { ms_colModelCache.Init(NUMCOLCACHELINKS); ms_collisionInMemory = LEVEL_NONE; } void CCollision::Update(void) { CVector pos = FindPlayerCoors(); eLevelName level = CTheZones::m_CurrLevel; bool changeLevel = false; // hardcode a level if there are no zones if(level == LEVEL_NONE){ if(CGame::currLevel == LEVEL_INDUSTRIAL && pos.x < 400.0f){ level = LEVEL_COMMERCIAL; changeLevel = true; }else if(CGame::currLevel == LEVEL_SUBURBAN && pos.x > -450.0f && pos.y < -1400.0f){ level = LEVEL_COMMERCIAL; changeLevel = true; }else{ if(pos.x > 800.0f){ level = LEVEL_INDUSTRIAL; changeLevel = true; }else if(pos.x < -800.0f){ level = LEVEL_SUBURBAN; changeLevel = true; } } } if(level != LEVEL_NONE && level != CGame::currLevel){ debug("changing level %d -> %d\n", CGame::currLevel, level); CGame::currLevel = level; } if(ms_collisionInMemory != CGame::currLevel) LoadCollisionWhenINeedIt(changeLevel); CStreaming::HaveAllBigBuildingsLoaded(CGame::currLevel); } void CCollision::LoadCollisionWhenINeedIt(bool changeLevel) { eLevelName level; level = LEVEL_NONE; if(!changeLevel){ //assert(0 && "unimplemented"); } if(level != CGame::currLevel || changeLevel){ CTimer::Stop(); CStreaming::RemoveIslandsNotUsed(LEVEL_INDUSTRIAL); CStreaming::RemoveIslandsNotUsed(LEVEL_COMMERCIAL); CStreaming::RemoveIslandsNotUsed(LEVEL_SUBURBAN); CStreaming::RemoveBigBuildings(LEVEL_INDUSTRIAL); CStreaming::RemoveBigBuildings(LEVEL_COMMERCIAL); CStreaming::RemoveBigBuildings(LEVEL_SUBURBAN); ms_collisionInMemory = CGame::currLevel; CStreaming::RemoveUnusedBigBuildings(CGame::currLevel); CStreaming::RemoveUnusedBuildings(CGame::currLevel); CStreaming::RequestBigBuildings(CGame::currLevel); CStreaming::LoadAllRequestedModels(); CStreaming::HaveAllBigBuildingsLoaded(CGame::currLevel); CTimer::Update(); } } #endif // // Test // bool CCollision::TestSphereSphere(const CColSphere &s1, const CColSphere &s2) { float d = s1.radius + s2.radius; return (s1.center - s2.center).MagnitudeSqr() < d*d; } bool CCollision::TestSphereBox(const CColSphere &sph, const CColBox &box) { if(sph.center.x + sph.radius < box.min.x) return false; if(sph.center.x - sph.radius > box.max.x) return false; if(sph.center.y + sph.radius < box.min.y) return false; if(sph.center.y - sph.radius > box.max.y) return false; if(sph.center.z + sph.radius < box.min.z) return false; if(sph.center.z - sph.radius > box.max.z) return false; return true; } bool CCollision::TestLineBox(const CColLine &line, const CColBox &box) { float t, x, y, z; // If either line point is in the box, we have a collision if(line.p0.x > box.min.x && line.p0.x < box.max.x && line.p0.y > box.min.y && line.p0.y < box.max.y && line.p0.z > box.min.z && line.p0.z < box.max.z) return true; if(line.p1.x > box.min.x && line.p1.x < box.max.x && line.p1.y > box.min.y && line.p1.y < box.max.y && line.p1.z > box.min.z && line.p1.z < box.max.z) return true; // check if points are on opposite sides of min x plane if((box.min.x - line.p1.x) * (box.min.x - line.p0.x) < 0.0f){ // parameter along line where we intersect t = (box.min.x - line.p0.x) / (line.p1.x - line.p0.x); // y of intersection y = line.p0.y + (line.p1.y - line.p0.y)*t; if(y > box.min.y && y < box.max.y){ // z of intersection z = line.p0.z + (line.p1.z - line.p0.z)*t; if(z > box.min.z && z < box.max.z) return true; } } // same test with max x plane if((line.p1.x - box.max.x) * (line.p0.x - box.max.x) < 0.0f){ t = (line.p0.x - box.max.x) / (line.p0.x - line.p1.x); y = line.p0.y + (line.p1.y - line.p0.y)*t; if(y > box.min.y && y < box.max.y){ z = line.p0.z + (line.p1.z - line.p0.z)*t; if(z > box.min.z && z < box.max.z) return true; } } // min y plne if((box.min.y - line.p0.y) * (box.min.y - line.p1.y) < 0.0f){ t = (box.min.y - line.p0.y) / (line.p1.y - line.p0.y); x = line.p0.x + (line.p1.x - line.p0.x)*t; if(x > box.min.x && x < box.max.x){ z = line.p0.z + (line.p1.z - line.p0.z)*t; if(z > box.min.z && z < box.max.z) return true; } } // max y plane if((line.p0.y - box.max.y) * (line.p1.y - box.max.y) < 0.0f){ t = (line.p0.y - box.max.y) / (line.p0.y - line.p1.y); x = line.p0.x + (line.p1.x - line.p0.x)*t; if(x > box.min.x && x < box.max.x){ z = line.p0.z + (line.p1.z - line.p0.z)*t; if(z > box.min.z && z < box.max.z) return true; } } // min z plne if((box.min.z - line.p0.z) * (box.min.z - line.p1.z) < 0.0f){ t = (box.min.z - line.p0.z) / (line.p1.z - line.p0.z); x = line.p0.x + (line.p1.x - line.p0.x)*t; if(x > box.min.x && x < box.max.x){ y = line.p0.y + (line.p1.y - line.p0.y)*t; if(y > box.min.y && y < box.max.y) return true; } } // max z plane if((line.p0.z - box.max.z) * (line.p1.z - box.max.z) < 0.0f){ t = (line.p0.z - box.max.z) / (line.p0.z - line.p1.z); x = line.p0.x + (line.p1.x - line.p0.x)*t; if(x > box.min.x && x < box.max.x){ y = line.p0.y + (line.p1.y - line.p0.y)*t; if(y > box.min.y && y < box.max.y) return true; } } return false; } bool CCollision::TestVerticalLineBox(const CColLine &line, const CColBox &box) { if(line.p0.x <= box.min.x) return false; if(line.p0.y <= box.min.y) return false; if(line.p0.x >= box.max.x) return false; if(line.p0.y >= box.max.y) return false; if(line.p0.z < line.p1.z){ if(line.p0.z > box.max.z) return false; if(line.p1.z < box.min.z) return false; }else{ if(line.p1.z > box.max.z) return false; if(line.p0.z < box.min.z) return false; } return true; } bool CCollision::TestLineTriangle(const CColLine &line, const CVector *verts, const CColTriangle &tri, const CColTrianglePlane &plane) { float t; CVector normal; plane.GetNormal(normal); // if points are on the same side, no collision if(plane.CalcPoint(line.p0) * plane.CalcPoint(line.p1) > 0.0f) return false; // intersection parameter on line t = -plane.CalcPoint(line.p0) / DotProduct(line.p1 - line.p0, normal); // find point of intersection CVector p = line.p0 + (line.p1-line.p0)*t; const CVector &va = verts[tri.a]; const CVector &vb = verts[tri.b]; const CVector &vc = verts[tri.c]; CVector2D vec1, vec2, vec3, vect; // We do the test in 2D. With the plane direction we // can figure out how to project the vectors. // normal = (c-a) x (b-a) switch(plane.dir){ case DIR_X_POS: vec1.x = va.y; vec1.y = va.z; vec2.x = vc.y; vec2.y = vc.z; vec3.x = vb.y; vec3.y = vb.z; vect.x = p.y; vect.y = p.z; break; case DIR_X_NEG: vec1.x = va.y; vec1.y = va.z; vec2.x = vb.y; vec2.y = vb.z; vec3.x = vc.y; vec3.y = vc.z; vect.x = p.y; vect.y = p.z; break; case DIR_Y_POS: vec1.x = va.z; vec1.y = va.x; vec2.x = vc.z; vec2.y = vc.x; vec3.x = vb.z; vec3.y = vb.x; vect.x = p.z; vect.y = p.x; break; case DIR_Y_NEG: vec1.x = va.z; vec1.y = va.x; vec2.x = vb.z; vec2.y = vb.x; vec3.x = vc.z; vec3.y = vc.x; vect.x = p.z; vect.y = p.x; break; case DIR_Z_POS: vec1.x = va.x; vec1.y = va.y; vec2.x = vc.x; vec2.y = vc.y; vec3.x = vb.x; vec3.y = vb.y; vect.x = p.x; vect.y = p.y; break; case DIR_Z_NEG: vec1.x = va.x; vec1.y = va.y; vec2.x = vb.x; vec2.y = vb.y; vec3.x = vc.x; vec3.y = vc.y; vect.x = p.x; vect.y = p.y; break; default: assert(0); } // This is our triangle: // 3-------2 // \ P / // \ / // \ / // 1 // We can use the "2d cross product" to check on which side // a vector is of another. Test is true if point is inside of all edges. if(CrossProduct2D(vec2-vec1, vect-vec1) < 0.0f) return false; if(CrossProduct2D(vec3-vec1, vect-vec1) > 0.0f) return false; if(CrossProduct2D(vec3-vec2, vect-vec2) < 0.0f) return false; return true; } // Test if line segment intersects with sphere. // If the first point is inside the sphere this test does not register a collision! // The code is reversed from the original code and rather ugly, see Process for a clear version. // TODO: actually rewrite this mess bool CCollision::TestLineSphere(const CColLine &line, const CColSphere &sph) { CVector v01 = line.p1 - line.p0; // vector from p0 to p1 CVector v0c = sph.center - line.p0; // vector from p0 to center float linesq = v01.MagnitudeSqr(); // I leave in the strange -2 factors even though they serve no real purpose float projline = -2.0f * DotProduct(v01, v0c); // project v0c onto line // Square of tangent from p0 multiplied by line length so we can compare with projline. // The length of the tangent would be this: sqrt((c-p0)^2 - r^2). // Negative if p0 is inside the sphere! This breaks the test! float tansq = 4.0f * linesq * (sph.center.MagnitudeSqr() - 2.0f*DotProduct(sph.center, line.p0) + line.p0.MagnitudeSqr() - sph.radius*sph.radius); float diffsq = projline*projline - tansq; // if diffsq < 0 that means the line is a passant, so no intersection if(diffsq < 0.0f) return false; // projline (negative in GTA for some reason) is the point on the line // in the middle of the two intersection points (startin from p0). // sqrt(diffsq) somehow works out to be the distance from that // midpoint to the intersection points. // So subtract that and get rid of the awkward scaling: float f = (-projline - sqrt(diffsq)) / (2.0f*linesq); // f should now be in range [0, 1] for [p0, p1] return f >= 0.0f && f <= 1.0f; } bool CCollision::TestSphereTriangle(const CColSphere &sphere, const CVector *verts, const CColTriangle &tri, const CColTrianglePlane &plane) { // If sphere and plane don't intersect, no collision if(fabs(plane.CalcPoint(sphere.center)) > sphere.radius) return false; const CVector &va = verts[tri.a]; const CVector &vb = verts[tri.b]; const CVector &vc = verts[tri.c]; // calculate two orthogonal basis vectors for the triangle CVector vec2 = vb - va; float len = vec2.Magnitude(); vec2 = vec2 * (1.0f/len); CVector vec1 = CrossProduct(vec2, plane.normal); // We know A has local coordinate [0,0] and B has [0,len]. // Now calculate coordinates on triangle for these two vectors: CVector vac = vc - va; CVector vas = sphere.center - va; CVector2D b(0.0f, len); CVector2D c(DotProduct(vec1, vac), DotProduct(vec2, vac)); CVector2D s(DotProduct(vec1, vas), DotProduct(vec2, vas)); // The three triangle lines partition the space into 6 sectors, // find out in which the center lies. int insideAB = CrossProduct2D(s, b) >= 0.0f; int insideAC = CrossProduct2D(c, s) >= 0.0f; int insideBC = CrossProduct2D(s-b, c-b) >= 0.0f; int testcase = insideAB + insideAC + insideBC; float dist = 0.0f; if(testcase == 1){ // closest to a vertex if(insideAB) dist = (sphere.center - vc).Magnitude(); else if(insideAC) dist = (sphere.center - vb).Magnitude(); else if(insideBC) dist = (sphere.center - va).Magnitude(); else assert(0); }else if(testcase == 2){ // closest to an edge if(!insideAB) dist = DistToLine(&va, &vb, &sphere.center); else if(!insideAC) dist = DistToLine(&va, &vc, &sphere.center); else if(!insideBC) dist = DistToLine(&vb, &vc, &sphere.center); else assert(0); }else if(testcase == 3){ // center is in triangle return true; }else assert(0); // front fell off return dist < sphere.radius; } bool CCollision::TestLineOfSight(CColLine &line, const CMatrix &matrix, CColModel &model, bool ignoreSurf78) { static CMatrix matTransform; int i; // transform line to model space Invert(matrix, matTransform); CColLine newline(matTransform * line.p0, matTransform * line.p1); // If we don't intersect with the bounding box, no chance on the rest if(!TestLineBox(newline, model.boundingBox)) return false; for(i = 0; i < model.numSpheres; i++) if(!ignoreSurf78 || model.spheres[i].surface != 7 && model.spheres[i].surface != 8) if(TestLineSphere(newline, model.spheres[i])) return true; for(i = 0; i < model.numBoxes; i++) if(!ignoreSurf78 || model.boxes[i].surface != 7 && model.boxes[i].surface != 8) if(TestLineBox(newline, model.boxes[i])) return true; CalculateTrianglePlanes(&model); for(i = 0; i < model.numTriangles; i++) if(!ignoreSurf78 || model.triangles[i].surface != 7 && model.triangles[i].surface != 8) if(TestLineTriangle(newline, model.vertices, model.triangles[i], model.trianglePlanes[i])) return true; return false; } // // Process // // For Spheres mindist is the squared distance to its center // For Lines mindist is between [0,1] bool CCollision::ProcessSphereSphere(const CColSphere &s1, const CColSphere &s2, CColPoint &point, float &mindistsq) { CVector dist = s1.center - s2.center; float d = dist.Magnitude() - s2.radius; // distance from s1's center to s2 float dc = d < 0.0f ? 0.0f : d; // clamp to zero, i.e. if s1's center is inside s2 // no collision if sphere is not close enough if(mindistsq <= dc*dc || s1.radius <= dc) return false; dist.Normalise(); point.point = s1.center - dist*dc; point.normal = dist; point.surfaceA = s1.surface; point.pieceA = s1.piece; point.surfaceB = s2.surface; point.pieceB = s2.piece; point.depth = s1.radius - d; // sphere overlap mindistsq = dc*dc; // collision radius return true; } bool CCollision::ProcessSphereBox(const CColSphere &sph, const CColBox &box, CColPoint &point, float &mindistsq) { CVector p; CVector dist; // GTA's code is too complicated, uses a huge 3x3x3 if statement // we can simplify the structure a lot // first make sure we have a collision at all if(sph.center.x + sph.radius < box.min.x) return false; if(sph.center.x - sph.radius > box.max.x) return false; if(sph.center.y + sph.radius < box.min.y) return false; if(sph.center.y - sph.radius > box.max.y) return false; if(sph.center.z + sph.radius < box.min.z) return false; if(sph.center.z - sph.radius > box.max.z) return false; // Now find out where the sphere center lies in relation to all the sides int xpos = sph.center.x < box.min.x ? 1 : sph.center.x > box.max.x ? 2 : 0; int ypos = sph.center.y < box.min.y ? 1 : sph.center.y > box.max.y ? 2 : 0; int zpos = sph.center.z < box.min.z ? 1 : sph.center.z > box.max.z ? 2 : 0; if(xpos == 0 && ypos == 0 && zpos == 0){ // sphere is inside the box p = (box.min + box.max)*0.5f; dist = sph.center - p; float lensq = dist.MagnitudeSqr(); if(lensq < mindistsq){ point.normal = dist * (1.0f/sqrt(lensq)); point.point = sph.center - point.normal; point.surfaceA = sph.surface; point.pieceA = sph.piece; point.surfaceB = box.surface; point.pieceB = box.piece; // find absolute distance to the closer side in each dimension float dx = dist.x > 0.0f ? box.max.x - sph.center.x : sph.center.x - box.min.x; float dy = dist.y > 0.0f ? box.max.y - sph.center.y : sph.center.y - box.min.y; float dz = dist.z > 0.0f ? box.max.z - sph.center.z : sph.center.z - box.min.z; // collision depth is maximum of that: if(dx > dy && dx > dz) point.depth = dx; else if(dy > dz) point.depth = dy; else point.depth = dz; return true; } }else{ // sphere is outside. // closest point on box: p.x = xpos == 1 ? box.min.x : xpos == 2 ? box.max.x : sph.center.x; p.y = ypos == 1 ? box.min.y : ypos == 2 ? box.max.y : sph.center.y; p.z = zpos == 1 ? box.min.z : zpos == 2 ? box.max.z : sph.center.z; dist = sph.center - p; float lensq = dist.MagnitudeSqr(); if(lensq < mindistsq){ float len = sqrt(lensq); point.point = p; point.normal = dist * (1.0f/len); point.surfaceA = sph.surface; point.pieceA = sph.piece; point.surfaceB = box.surface; point.pieceB = box.piece; point.depth = sph.radius - len; mindistsq = lensq; return true; } } return false; } bool CCollision::ProcessLineBox(const CColLine &line, const CColBox &box, CColPoint &point, float &mindist) { float mint, t, x, y, z; CVector normal; CVector p; mint = 1.0f; // check if points are on opposite sides of min x plane if((box.min.x - line.p1.x) * (box.min.x - line.p0.x) < 0.0f){ // parameter along line where we intersect t = (box.min.x - line.p0.x) / (line.p1.x - line.p0.x); // y of intersection y = line.p0.y + (line.p1.y - line.p0.y)*t; if(y > box.min.y && y < box.max.y){ // z of intersection z = line.p0.z + (line.p1.z - line.p0.z)*t; if(z > box.min.z && z < box.max.z) if(t < mint){ mint = t; p = CVector(box.min.x, y, z); normal = CVector(-1.0f, 0.0f, 0.0f); } } } // max x plane if((line.p1.x - box.max.x) * (line.p0.x - box.max.x) < 0.0f){ t = (line.p0.x - box.max.x) / (line.p0.x - line.p1.x); y = line.p0.y + (line.p1.y - line.p0.y)*t; if(y > box.min.y && y < box.max.y){ z = line.p0.z + (line.p1.z - line.p0.z)*t; if(z > box.min.z && z < box.max.z) if(t < mint){ mint = t; p = CVector(box.max.x, y, z); normal = CVector(1.0f, 0.0f, 0.0f); } } } // min y plne if((box.min.y - line.p0.y) * (box.min.y - line.p1.y) < 0.0f){ t = (box.min.y - line.p0.y) / (line.p1.y - line.p0.y); x = line.p0.x + (line.p1.x - line.p0.x)*t; if(x > box.min.x && x < box.max.x){ z = line.p0.z + (line.p1.z - line.p0.z)*t; if(z > box.min.z && z < box.max.z) if(t < mint){ mint = t; p = CVector(x, box.min.y, z); normal = CVector(0.0f, -1.0f, 0.0f); } } } // max y plane if((line.p0.y - box.max.y) * (line.p1.y - box.max.y) < 0.0f){ t = (line.p0.y - box.max.y) / (line.p0.y - line.p1.y); x = line.p0.x + (line.p1.x - line.p0.x)*t; if(x > box.min.x && x < box.max.x){ z = line.p0.z + (line.p1.z - line.p0.z)*t; if(z > box.min.z && z < box.max.z) if(t < mint){ mint = t; p = CVector(x, box.max.y, z); normal = CVector(0.0f, 1.0f, 0.0f); } } } // min z plne if((box.min.z - line.p0.z) * (box.min.z - line.p1.z) < 0.0f){ t = (box.min.z - line.p0.z) / (line.p1.z - line.p0.z); x = line.p0.x + (line.p1.x - line.p0.x)*t; if(x > box.min.x && x < box.max.x){ y = line.p0.y + (line.p1.y - line.p0.y)*t; if(y > box.min.y && y < box.max.y) if(t < mint){ mint = t; p = CVector(x, y, box.min.z); normal = CVector(0.0f, 0.0f, -1.0f); } } } // max z plane if((line.p0.z - box.max.z) * (line.p1.z - box.max.z) < 0.0f){ t = (line.p0.z - box.max.z) / (line.p0.z - line.p1.z); x = line.p0.x + (line.p1.x - line.p0.x)*t; if(x > box.min.x && x < box.max.x){ y = line.p0.y + (line.p1.y - line.p0.y)*t; if(y > box.min.y && y < box.max.y) if(t < mint){ mint = t; p = CVector(x, y, box.max.z); normal = CVector(0.0f, 0.0f, 1.0f); } } } if(mint >= mindist) return false; point.point = p; point.normal = normal; point.surfaceA = 0; point.pieceA = 0; point.surfaceB = box.surface; point.pieceB = box.piece; mindist = mint; return true; } // If line.p0 lies inside sphere, no collision is registered. bool CCollision::ProcessLineSphere(const CColLine &line, const CColSphere &sphere, CColPoint &point, float &mindist) { CVector v01 = line.p1 - line.p0; CVector v0c = sphere.center - line.p0; float linesq = v01.MagnitudeSqr(); // project v0c onto v01, scaled by |v01| this is the midpoint of the two intersections float projline = DotProduct(v01, v0c); // tangent of p0 to sphere, scaled by linesq just like projline^2 float tansq = (v0c.MagnitudeSqr() - sphere.radius*sphere.radius) * linesq; // this works out to be the square of the distance between the midpoint and the intersections float diffsq = projline*projline - tansq; // no intersection if(diffsq < 0.0f) return false; // point of first intersection, in range [0,1] between p0 and p1 float t = (projline - sqrt(diffsq)) / linesq; // if not on line or beyond mindist, no intersection if(t < 0.0f || t > 1.0f || t >= mindist) return false; point.point = line.p0 + v01*t; point.normal = point.point - sphere.center; point.normal.Normalise(); point.surfaceA = 0; point.pieceA = 0; point.surfaceB = sphere.surface; point.pieceB = sphere.piece; mindist = t; return true; } bool CCollision::ProcessVerticalLineTriangle(const CColLine &line, const CVector *verts, const CColTriangle &tri, const CColTrianglePlane &plane, CColPoint &point, float &mindist, CStoredCollPoly *poly) { float t; CVector normal; const CVector &p0 = line.p0; const CVector &va = verts[tri.a]; const CVector &vb = verts[tri.b]; const CVector &vc = verts[tri.c]; // early out bound rect test if(p0.x < va.x && p0.x < vb.x && p0.x < vc.x) return false; if(p0.x > va.x && p0.x > vb.x && p0.x > vc.x) return false; if(p0.y < va.y && p0.y < vb.y && p0.y < vc.y) return false; if(p0.y > va.y && p0.y > vb.y && p0.y > vc.y) return false; plane.GetNormal(normal); // if points are on the same side, no collision if(plane.CalcPoint(p0) * plane.CalcPoint(line.p1) > 0.0f) return false; // intersection parameter on line float h = (line.p1 - p0).z; t = -plane.CalcPoint(p0) / (h * normal.z); // early out if we're beyond the mindist if(t >= mindist) return false; CVector p(p0.x, p0.y, p0.z + h*t); CVector2D vec1, vec2, vec3, vect; switch(plane.dir){ case DIR_X_POS: vec1.x = va.y; vec1.y = va.z; vec2.x = vc.y; vec2.y = vc.z; vec3.x = vb.y; vec3.y = vb.z; vect.x = p.y; vect.y = p.z; break; case DIR_X_NEG: vec1.x = va.y; vec1.y = va.z; vec2.x = vb.y; vec2.y = vb.z; vec3.x = vc.y; vec3.y = vc.z; vect.x = p.y; vect.y = p.z; break; case DIR_Y_POS: vec1.x = va.z; vec1.y = va.x; vec2.x = vc.z; vec2.y = vc.x; vec3.x = vb.z; vec3.y = vb.x; vect.x = p.z; vect.y = p.x; break; case DIR_Y_NEG: vec1.x = va.z; vec1.y = va.x; vec2.x = vb.z; vec2.y = vb.x; vec3.x = vc.z; vec3.y = vc.x; vect.x = p.z; vect.y = p.x; break; case DIR_Z_POS: vec1.x = va.x; vec1.y = va.y; vec2.x = vc.x; vec2.y = vc.y; vec3.x = vb.x; vec3.y = vb.y; vect.x = p.x; vect.y = p.y; break; case DIR_Z_NEG: vec1.x = va.x; vec1.y = va.y; vec2.x = vb.x; vec2.y = vb.y; vec3.x = vc.x; vec3.y = vc.y; vect.x = p.x; vect.y = p.y; break; default: assert(0); } if(CrossProduct2D(vec2-vec1, vect-vec1) < 0.0f) return false; if(CrossProduct2D(vec3-vec1, vect-vec1) > 0.0f) return false; if(CrossProduct2D(vec3-vec2, vect-vec2) < 0.0f) return false; point.point = p; point.normal = normal; point.surfaceA = 0; point.pieceA = 0; point.surfaceB = tri.surface; point.pieceB = 0; if(poly){ poly->verts[0] = va; poly->verts[1] = vb; poly->verts[2] = vc; poly->valid = true; } mindist = t; return true; } bool CCollision::ProcessLineTriangle(const CColLine &line , const CVector *verts, const CColTriangle &tri, const CColTrianglePlane &plane, CColPoint &point, float &mindist) { float t; CVector normal; plane.GetNormal(normal); // if points are on the same side, no collision if(plane.CalcPoint(line.p0) * plane.CalcPoint(line.p1) > 0.0f) return false; // intersection parameter on line t = -plane.CalcPoint(line.p0) / DotProduct(line.p1 - line.p0, normal); // early out if we're beyond the mindist if(t >= mindist) return false; // find point of intersection CVector p = line.p0 + (line.p1-line.p0)*t; const CVector &va = verts[tri.a]; const CVector &vb = verts[tri.b]; const CVector &vc = verts[tri.c]; CVector2D vec1, vec2, vec3, vect; switch(plane.dir){ case DIR_X_POS: vec1.x = va.y; vec1.y = va.z; vec2.x = vc.y; vec2.y = vc.z; vec3.x = vb.y; vec3.y = vb.z; vect.x = p.y; vect.y = p.z; break; case DIR_X_NEG: vec1.x = va.y; vec1.y = va.z; vec2.x = vb.y; vec2.y = vb.z; vec3.x = vc.y; vec3.y = vc.z; vect.x = p.y; vect.y = p.z; break; case DIR_Y_POS: vec1.x = va.z; vec1.y = va.x; vec2.x = vc.z; vec2.y = vc.x; vec3.x = vb.z; vec3.y = vb.x; vect.x = p.z; vect.y = p.x; break; case DIR_Y_NEG: vec1.x = va.z; vec1.y = va.x; vec2.x = vb.z; vec2.y = vb.x; vec3.x = vc.z; vec3.y = vc.x; vect.x = p.z; vect.y = p.x; break; case DIR_Z_POS: vec1.x = va.x; vec1.y = va.y; vec2.x = vc.x; vec2.y = vc.y; vec3.x = vb.x; vec3.y = vb.y; vect.x = p.x; vect.y = p.y; break; case DIR_Z_NEG: vec1.x = va.x; vec1.y = va.y; vec2.x = vb.x; vec2.y = vb.y; vec3.x = vc.x; vec3.y = vc.y; vect.x = p.x; vect.y = p.y; break; default: assert(0); } if(CrossProduct2D(vec2-vec1, vect-vec1) < 0.0f) return false; if(CrossProduct2D(vec3-vec1, vect-vec1) > 0.0f) return false; if(CrossProduct2D(vec3-vec2, vect-vec2) < 0.0f) return false; point.point = p; point.normal = normal; point.surfaceA = 0; point.pieceA = 0; point.surfaceB = tri.surface; point.pieceB = 0; mindist = t; return true; } bool CCollision::ProcessSphereTriangle(const CColSphere &sphere, const CVector *verts, const CColTriangle &tri, const CColTrianglePlane &plane, CColPoint &point, float &mindistsq) { // If sphere and plane don't intersect, no collision float planedist = plane.CalcPoint(sphere.center); float distsq = planedist*planedist; if(fabs(planedist) > sphere.radius || distsq > mindistsq) return false; const CVector &va = verts[tri.a]; const CVector &vb = verts[tri.b]; const CVector &vc = verts[tri.c]; // calculate two orthogonal basis vectors for the triangle CVector normal; plane.GetNormal(normal); CVector vec2 = vb - va; float len = vec2.Magnitude(); vec2 = vec2 * (1.0f/len); CVector vec1 = CrossProduct(vec2, normal); // We know A has local coordinate [0,0] and B has [0,len]. // Now calculate coordinates on triangle for these two vectors: CVector vac = vc - va; CVector vas = sphere.center - va; CVector2D b(0.0f, len); CVector2D c(DotProduct(vec1, vac), DotProduct(vec2, vac)); CVector2D s(DotProduct(vec1, vas), DotProduct(vec2, vas)); // The three triangle lines partition the space into 6 sectors, // find out in which the center lies. int insideAB = CrossProduct2D(s, b) >= 0.0f; int insideAC = CrossProduct2D(c, s) >= 0.0f; int insideBC = CrossProduct2D(s-b, c-b) >= 0.0f; int testcase = insideAB + insideAC + insideBC; float dist = 0.0f; CVector p; if(testcase == 1){ // closest to a vertex if(insideAB) p = vc; else if(insideAC) p = vb; else if(insideBC) p = va; else assert(0); dist = (sphere.center - p).Magnitude(); }else if(testcase == 2){ // closest to an edge if(!insideAB) dist = DistToLine(&va, &vb, &sphere.center, p); else if(!insideAC) dist = DistToLine(&va, &vc, &sphere.center, p); else if(!insideBC) dist = DistToLine(&vb, &vc, &sphere.center, p); else assert(0); }else if(testcase == 3){ // center is in triangle dist = fabs(planedist); p = sphere.center - normal*planedist; }else assert(0); // front fell off if(dist >= sphere.radius || dist*dist >= mindistsq) return false; point.point = p; point.normal = sphere.center - p; point.normal.Normalise(); point.surfaceA = sphere.surface; point.pieceA = sphere.piece; point.surfaceB = tri.surface; point.pieceB = 0; point.depth = sphere.radius - dist; mindistsq = dist*dist; return true; } bool CCollision::ProcessLineOfSight(const CColLine &line, const CMatrix &matrix, CColModel &model, CColPoint &point, float &mindist, bool ignoreSurf78) { static CMatrix matTransform; int i; // transform line to model space Invert(matrix, matTransform); CColLine newline(matTransform * line.p0, matTransform * line.p1); // If we don't intersect with the bounding box, no chance on the rest if(!TestLineBox(newline, model.boundingBox)) return false; float coldist = mindist; for(i = 0; i < model.numSpheres; i++) if(!ignoreSurf78 || model.spheres[i].surface != 7 && model.spheres[i].surface != 8) ProcessLineSphere(newline, model.spheres[i], point, coldist); for(i = 0; i < model.numBoxes; i++) if(!ignoreSurf78 || model.boxes[i].surface != 7 && model.boxes[i].surface != 8) ProcessLineBox(newline, model.boxes[i], point, coldist); CalculateTrianglePlanes(&model); for(i = 0; i < model.numTriangles; i++) if(!ignoreSurf78 || model.triangles[i].surface != 7 && model.triangles[i].surface != 8) ProcessLineTriangle(newline, model.vertices, model.triangles[i], model.trianglePlanes[i], point, coldist); if(coldist < mindist){ point.point = matrix * point.point; point.normal = Multiply3x3(matrix, point.normal); mindist = coldist; return true; } return false; } bool CCollision::ProcessVerticalLine(const CColLine &line, const CMatrix &matrix, CColModel &model, CColPoint &point, float &mindist, bool ignoreSurf78, CStoredCollPoly *poly) { static CStoredCollPoly TempStoredPoly; int i; // transform line to model space // Why does the game seem to do this differently than above? CColLine newline(MultiplyInverse(matrix, line.p0), MultiplyInverse(matrix, line.p1)); newline.p1.x = newline.p0.x; newline.p1.y = newline.p0.y; if(!TestVerticalLineBox(newline, model.boundingBox)) return false; float coldist = mindist; for(i = 0; i < model.numSpheres; i++) if(!ignoreSurf78 || model.spheres[i].surface != 7 && model.spheres[i].surface != 8) ProcessLineSphere(newline, model.spheres[i], point, coldist); for(i = 0; i < model.numBoxes; i++) if(!ignoreSurf78 || model.boxes[i].surface != 7 && model.boxes[i].surface != 8) ProcessLineBox(newline, model.boxes[i], point, coldist); CalculateTrianglePlanes(&model); TempStoredPoly.valid = false; for(i = 0; i < model.numTriangles; i++) if(!ignoreSurf78 || model.triangles[i].surface != 7 && model.triangles[i].surface != 8) ProcessVerticalLineTriangle(newline, model.vertices, model.triangles[i], model.trianglePlanes[i], point, coldist, &TempStoredPoly); if(coldist < mindist){ point.point = matrix * point.point; point.normal = Multiply3x3(matrix, point.normal); if(poly && TempStoredPoly.valid){ *poly = TempStoredPoly; poly->verts[0] = matrix * poly->verts[0]; poly->verts[1] = matrix * poly->verts[1]; poly->verts[2] = matrix * poly->verts[2]; } mindist = coldist; return true; } return false; } enum { MAXNUMSPHERES = 128, MAXNUMBOXES = 32, MAXNUMLINES = 16, MAXNUMTRIS = 600 }; // This checks model A's spheres and lines against model B's spheres, boxes and triangles. // Returns the number of A's spheres that collide. // Returned ColPoints are in world space. // NB: lines do not seem to be supported very well, use with caution int32 CCollision::ProcessColModels(const CMatrix &matrixA, CColModel &modelA, const CMatrix &matrixB, CColModel &modelB, CColPoint *spherepoints, CColPoint *linepoints, float *linedists) { static int aSphereIndicesA[MAXNUMSPHERES]; static int aLineIndicesA[MAXNUMLINES]; static int aSphereIndicesB[MAXNUMSPHERES]; static int aBoxIndicesB[MAXNUMBOXES]; static int aTriangleIndicesB[MAXNUMTRIS]; static bool aCollided[MAXNUMLINES]; static CColSphere aSpheresA[MAXNUMSPHERES]; static CColLine aLinesA[MAXNUMLINES]; static CMatrix matAB, matBA; CColSphere s; int i, j; assert(modelA.numSpheres <= MAXNUMSPHERES); assert(modelA.numLines <= MAXNUMLINES); // From model A space to model B space matAB = Invert(matrixB, matAB) * matrixA; CColSphere bsphereAB; // bounding sphere of A in B space bsphereAB.Set(modelA.boundingSphere.radius, matAB * modelA.boundingSphere.center); if(!TestSphereBox(bsphereAB, modelB.boundingBox)) return 0; // B to A space matBA = Invert(matrixA, matBA) * matrixB; // transform modelA's spheres and lines to B space for(i = 0; i < modelA.numSpheres; i++){ CColSphere &s = modelA.spheres[i]; aSpheresA[i].Set(s.radius, matAB * s.center, s.surface, s.piece); } for(i = 0; i < modelA.numLines; i++) aLinesA[i].Set(matAB * modelA.lines[i].p0, matAB * modelA.lines[i].p1); // Test them against model B's bounding volumes int numSpheresA = 0; int numLinesA = 0; for(i = 0; i < modelA.numSpheres; i++) if(TestSphereBox(aSpheresA[i], modelB.boundingBox)) aSphereIndicesA[numSpheresA++] = i; // no actual check??? for(i = 0; i < modelA.numLines; i++) aLineIndicesA[numLinesA++] = i; // No collision if(numSpheresA == 0 && numLinesA == 0) return 0; // Check model B against A's bounding volumes int numSpheresB = 0; int numBoxesB = 0; int numTrianglesB = 0; for(i = 0; i < modelB.numSpheres; i++){ s.Set(modelB.spheres[i].radius, matBA * modelB.spheres[i].center); if(TestSphereBox(s, modelA.boundingBox)) aSphereIndicesB[numSpheresB++] = i; } for(i = 0; i < modelB.numBoxes; i++) if(TestSphereBox(bsphereAB, modelB.boxes[i])) aBoxIndicesB[numBoxesB++] = i; CalculateTrianglePlanes(&modelB); for(i = 0; i < modelB.numTriangles; i++) if(TestSphereTriangle(bsphereAB, modelB.vertices, modelB.triangles[i], modelB.trianglePlanes[i])) aTriangleIndicesB[numTrianglesB++] = i; assert(numSpheresB <= MAXNUMSPHERES); assert(numBoxesB <= MAXNUMBOXES); assert(numTrianglesB <= MAXNUMTRIS); // No collision if(numSpheresB == 0 && numBoxesB == 0 && numTrianglesB == 0) return 0; // We now have the collision volumes in A and B that are worth processing. // Process A's spheres against B's collision volumes int numCollisions = 0; for(i = 0; i < numSpheresA; i++){ float coldist = 1.0e24f; bool hasCollided = false; for(j = 0; j < numSpheresB; j++) hasCollided |= ProcessSphereSphere( aSpheresA[aSphereIndicesA[i]], modelB.spheres[aSphereIndicesB[j]], spherepoints[numCollisions], coldist); for(j = 0; j < numBoxesB; j++) hasCollided |= ProcessSphereBox( aSpheresA[aSphereIndicesA[i]], modelB.boxes[aBoxIndicesB[j]], spherepoints[numCollisions], coldist); for(j = 0; j < numTrianglesB; j++) hasCollided |= ProcessSphereTriangle( aSpheresA[aSphereIndicesA[i]], modelB.vertices, modelB.triangles[aTriangleIndicesB[j]], modelB.trianglePlanes[aTriangleIndicesB[j]], spherepoints[numCollisions], coldist); if(hasCollided) numCollisions++; } for(i = 0; i < numCollisions; i++){ spherepoints[i].point = matrixB * spherepoints[i].point; spherepoints[i].normal = Multiply3x3(matrixB, spherepoints[i].normal); } // And the same thing for the lines in A for(i = 0; i < numLinesA; i++){ aCollided[i] = false; for(j = 0; j < numSpheresB; j++) aCollided[i] |= ProcessLineSphere( aLinesA[aLineIndicesA[i]], modelB.spheres[aSphereIndicesB[j]], linepoints[aLineIndicesA[i]], linedists[aLineIndicesA[i]]); for(j = 0; j < numBoxesB; j++) aCollided[i] |= ProcessLineBox( aLinesA[aLineIndicesA[i]], modelB.boxes[aBoxIndicesB[j]], linepoints[aLineIndicesA[i]], linedists[aLineIndicesA[i]]); for(j = 0; j < numTrianglesB; j++) aCollided[i] |= ProcessLineTriangle( aLinesA[aLineIndicesA[i]], modelB.vertices, modelB.triangles[aTriangleIndicesB[j]], modelB.trianglePlanes[aTriangleIndicesB[j]], linepoints[aLineIndicesA[i]], linedists[aLineIndicesA[i]]); } for(i = 0; i < numLinesA; i++) if(aCollided[i]){ j = aLineIndicesA[i]; linepoints[j].point = matrixB * linepoints[j].point; linepoints[j].normal = Multiply3x3(matrixB, linepoints[j].normal); } return numCollisions; // sphere collisions } // // Misc // float CCollision::DistToLine(const CVector *l0, const CVector *l1, const CVector *point) { float lensq = (*l1 - *l0).MagnitudeSqr(); float dot = DotProduct(*point - *l0, *l1 - *l0); // Between 0 and len we're above the line. // if not, calculate distance to endpoint if(dot <= 0.0f) return (*point - *l0).Magnitude(); if(dot >= lensq) return (*point - *l1).Magnitude(); // distance to line return sqrt((*point - *l0).MagnitudeSqr() - dot*dot/lensq); } // same as above but also return the point on the line float CCollision::DistToLine(const CVector *l0, const CVector *l1, const CVector *point, CVector &closest) { float lensq = (*l1 - *l0).MagnitudeSqr(); float dot = DotProduct(*point - *l0, *l1 - *l0); // find out which point we're closest to if(dot <= 0.0f) closest = *l0; else if(dot >= lensq) closest = *l1; else closest = *l0 + (*l1 - *l0)*(dot/lensq); // this is the distance return (*point - closest).Magnitude(); } void CCollision::CalculateTrianglePlanes(CColModel *model) { if(model->numTriangles == 0) return; CLink *lptr; if(model->trianglePlanes){ // re-insert at front so it's not removed again soon lptr = model->GetLinkPtr(); lptr->Remove(); ms_colModelCache.head.Insert(lptr); }else{ assert(model); lptr = ms_colModelCache.Insert(model); if(lptr == nil){ // make room if we have to, remove last in list lptr = ms_colModelCache.tail.prev; assert(lptr); assert(lptr->item); lptr->item->RemoveTrianglePlanes(); ms_colModelCache.Remove(lptr); // now this cannot fail lptr = ms_colModelCache.Insert(model); assert(lptr); } model->CalculateTrianglePlanes(); model->SetLinkPtr(lptr); } } void CCollision::DrawColModel(const CMatrix &mat, const CColModel &colModel) { } void CCollision::DrawColModel_Coloured(const CMatrix &mat, const CColModel &colModel, int32 id) { int i; int s; float f; CVector verts[8]; CVector min, max; int r, g, b; RwImVertexIndex *iptr; RwIm3DVertex *vptr; RenderBuffer::ClearRenderBuffer(); RwRenderStateSet(rwRENDERSTATEZWRITEENABLE, (void*)TRUE); RwRenderStateSet(rwRENDERSTATEVERTEXALPHAENABLE, (void*)TRUE); RwRenderStateSet(rwRENDERSTATESRCBLEND, (void*)rwBLENDSRCALPHA); RwRenderStateSet(rwRENDERSTATEDESTBLEND, (void*)rwBLENDINVSRCALPHA); RwRenderStateSet(rwRENDERSTATETEXTURERASTER, nil); for(i = 0; i < colModel.numTriangles; i++){ colModel.GetTrianglePoint(verts[0], colModel.triangles[i].a); colModel.GetTrianglePoint(verts[1], colModel.triangles[i].b); colModel.GetTrianglePoint(verts[2], colModel.triangles[i].c); verts[0] = mat * verts[0]; verts[1] = mat * verts[1]; verts[2] = mat * verts[2]; // TODO: surface r = 255; g = 128; b = 0; s = colModel.triangles[i].surface; f = (s & 0xF)/32.0f + 0.5f; switch(CSurfaceTable::GetAdhesionGroup(s)){ case ADHESIVE_RUBBER: r = f * 255.0f; g = 0; b = 0; break; case ADHESIVE_HARD: r = f*255.0f; g = f*255.0f; b = f*128.0f; break; case ADHESIVE_ROAD: r = f*128.0f; g = f*128.0f; b = f*128.0f; break; case ADHESIVE_LOOSE: r = 0; g = f * 255.0f; b = 0; break; case ADHESIVE_WET: r = 0; g = 0; b = f * 255.0f; break; default: // this doesn't make much sense r *= f; g *= f; b *= f; } // TODO: make some surface types flicker? if(s > SURFACE_32){ r = CGeneral::GetRandomNumber(); g = CGeneral::GetRandomNumber(); b = CGeneral::GetRandomNumber(); printf("Illegal surfacetype:%d on MI:%d\n", s, id); } RenderBuffer::StartStoring(6, 3, &iptr, &vptr); RwIm3DVertexSetRGBA(&vptr[0], r, g, b, 255); RwIm3DVertexSetRGBA(&vptr[1], r, g, b, 255); RwIm3DVertexSetRGBA(&vptr[2], r, g, b, 255); RwIm3DVertexSetU(&vptr[0], 0.0f); RwIm3DVertexSetV(&vptr[0], 0.0f); RwIm3DVertexSetU(&vptr[1], 0.0f); RwIm3DVertexSetV(&vptr[1], 1.0f); RwIm3DVertexSetU(&vptr[2], 1.0f); RwIm3DVertexSetV(&vptr[2], 1.0f); RwIm3DVertexSetPos(&vptr[0], verts[0].x, verts[0].y, verts[0].z); RwIm3DVertexSetPos(&vptr[1], verts[1].x, verts[1].y, verts[1].z); RwIm3DVertexSetPos(&vptr[2], verts[2].x, verts[2].y, verts[2].z); iptr[0] = 0; iptr[1] = 1; iptr[2] = 2; iptr[3] = 0; iptr[4] = 2; iptr[5] = 1; RenderBuffer::StopStoring(); } for(i = 0; i < colModel.numBoxes; i++){ min = colModel.boxes[i].min; max = colModel.boxes[i].max; verts[0] = mat * CVector(min.x, min.y, min.z); verts[1] = mat * CVector(min.x, min.y, max.z); verts[2] = mat * CVector(min.x, max.y, min.z); verts[3] = mat * CVector(min.x, max.y, max.z); verts[4] = mat * CVector(max.x, min.y, min.z); verts[5] = mat * CVector(max.x, min.y, max.z); verts[6] = mat * CVector(max.x, max.y, min.z); verts[7] = mat * CVector(max.x, max.y, max.z); s = colModel.boxes[i].surface; f = (s & 0xF)/32.0f + 0.5f; switch(CSurfaceTable::GetAdhesionGroup(s)){ case ADHESIVE_RUBBER: r = f * 255.0f; g = 0; b = 0; break; case ADHESIVE_HARD: r = f*255.0f; g = f*255.0f; b = f*128.0f; break; case ADHESIVE_ROAD: r = f*128.0f; g = f*128.0f; b = f*128.0f; break; case ADHESIVE_LOOSE: r = 0; g = f * 255.0f; b = 0; break; case ADHESIVE_WET: r = 0; g = 0; b = f * 255.0f; break; default: // this doesn't make much sense r *= f; g *= f; b *= f; } // TODO: make some surface types flicker? RenderBuffer::StartStoring(36, 8, &iptr, &vptr); RwIm3DVertexSetRGBA(&vptr[0], r, g, b, 255); RwIm3DVertexSetRGBA(&vptr[1], r, g, b, 255); RwIm3DVertexSetRGBA(&vptr[2], r, g, b, 255); RwIm3DVertexSetRGBA(&vptr[3], r, g, b, 255); RwIm3DVertexSetRGBA(&vptr[4], r, g, b, 255); RwIm3DVertexSetRGBA(&vptr[5], r, g, b, 255); RwIm3DVertexSetRGBA(&vptr[6], r, g, b, 255); RwIm3DVertexSetRGBA(&vptr[7], r, g, b, 255); RwIm3DVertexSetU(&vptr[0], 0.0f); RwIm3DVertexSetV(&vptr[0], 0.0f); RwIm3DVertexSetU(&vptr[1], 0.0f); RwIm3DVertexSetV(&vptr[1], 1.0f); RwIm3DVertexSetU(&vptr[2], 1.0f); RwIm3DVertexSetV(&vptr[2], 1.0f); RwIm3DVertexSetU(&vptr[3], 0.0f); RwIm3DVertexSetV(&vptr[3], 0.0f); RwIm3DVertexSetU(&vptr[4], 0.0f); RwIm3DVertexSetV(&vptr[4], 1.0f); RwIm3DVertexSetU(&vptr[5], 1.0f); RwIm3DVertexSetV(&vptr[5], 1.0f); RwIm3DVertexSetU(&vptr[6], 0.0f); RwIm3DVertexSetV(&vptr[6], 1.0f); RwIm3DVertexSetU(&vptr[7], 1.0f); RwIm3DVertexSetV(&vptr[7], 1.0f); RwIm3DVertexSetPos(&vptr[0], verts[0].x, verts[0].y, verts[0].z); RwIm3DVertexSetPos(&vptr[1], verts[1].x, verts[1].y, verts[1].z); RwIm3DVertexSetPos(&vptr[2], verts[2].x, verts[2].y, verts[2].z); RwIm3DVertexSetPos(&vptr[3], verts[3].x, verts[3].y, verts[3].z); RwIm3DVertexSetPos(&vptr[4], verts[4].x, verts[4].y, verts[4].z); RwIm3DVertexSetPos(&vptr[5], verts[5].x, verts[5].y, verts[5].z); RwIm3DVertexSetPos(&vptr[6], verts[6].x, verts[6].y, verts[6].z); RwIm3DVertexSetPos(&vptr[7], verts[7].x, verts[7].y, verts[7].z); iptr[0] = 0; iptr[1] = 1; iptr[2] = 2; iptr[3] = 1; iptr[4] = 3; iptr[5] = 2; iptr[6] = 1; iptr[7] = 5; iptr[8] = 7; iptr[9] = 1; iptr[10] = 7; iptr[11] = 3; iptr[12] = 2; iptr[13] = 3; iptr[14] = 7; iptr[15] = 2; iptr[16] = 7; iptr[17] = 6; iptr[18] = 0; iptr[19] = 5; iptr[20] = 1; iptr[21] = 0; iptr[22] = 4; iptr[23] = 5; iptr[24] = 0; iptr[25] = 2; iptr[26] = 4; iptr[27] = 2; iptr[28] = 6; iptr[29] = 4; iptr[30] = 4; iptr[31] = 6; iptr[32] = 7; iptr[33] = 4; iptr[34] = 7; iptr[35] = 5; RenderBuffer::StopStoring(); } RenderBuffer::RenderStuffInBuffer(); RwRenderStateSet(rwRENDERSTATESRCBLEND, (void*)rwBLENDSRCALPHA); RwRenderStateSet(rwRENDERSTATEDESTBLEND, (void*)rwBLENDINVSRCALPHA); RwRenderStateSet(rwRENDERSTATEVERTEXALPHAENABLE, (void*)FALSE); RwRenderStateSet(rwRENDERSTATEZWRITEENABLE, (void*)TRUE); RwRenderStateSet(rwRENDERSTATEZTESTENABLE, (void*)TRUE); } /* * ColModel code */ void CColSphere::Set(float radius, const CVector ¢er, uint8 surf, uint8 piece) { this->radius = radius; this->center = center; this->surface = surf; this->piece = piece; } void CColBox::Set(const CVector &min, const CVector &max, uint8 surf, uint8 piece) { this->min = min; this->max = max; this->surface = surf; this->piece = piece; } void CColLine::Set(const CVector &p0, const CVector &p1) { this->p0 = p0; this->p1 = p1; } void CColTriangle::Set(const CVector *, int a, int b, int c, uint8 surf, uint8 piece) { this->a = a; this->b = b; this->c = c; this->surface = surf; } void CColTrianglePlane::Set(const CVector *v, CColTriangle &tri) { const CVector &va = v[tri.a]; const CVector &vb = v[tri.b]; const CVector &vc = v[tri.c]; normal = CrossProduct(vc-va, vb-va); normal.Normalise(); dist = DotProduct(normal, va); CVector an(fabs(normal.x), fabs(normal.y), fabs(normal.z)); // find out largest component and its direction if(an.x > an.y && an.x > an.z) dir = normal.x < 0.0f ? DIR_X_NEG : DIR_X_POS; else if(an.y > an.z) dir = normal.y < 0.0f ? DIR_Y_NEG : DIR_Y_POS; else dir = normal.z < 0.0f ? DIR_Z_NEG : DIR_Z_POS; } CColModel::CColModel(void) { numSpheres = 0; spheres = nil; numLines = 0; lines = nil; numBoxes = 0; boxes = nil; numTriangles = 0; vertices = nil; triangles = nil; trianglePlanes = nil; level = CGame::currLevel; ownsCollisionVolumes = true; } CColModel::~CColModel(void) { RemoveCollisionVolumes(); RemoveTrianglePlanes(); } void CColModel::RemoveCollisionVolumes(void) { if(ownsCollisionVolumes){ RwFree(spheres); RwFree(lines); RwFree(boxes); RwFree(vertices); RwFree(triangles); } numSpheres = 0; numLines = 0; numBoxes = 0; numTriangles = 0; spheres = nil; lines = nil; boxes = nil; vertices = nil; triangles = nil; } void CColModel::CalculateTrianglePlanes(void) { // HACK: allocate space for one more element to stuff the link pointer into trianglePlanes = (CColTrianglePlane*)RwMalloc(sizeof(CColTrianglePlane) * (numTriangles+1)); for(int i = 0; i < numTriangles; i++) trianglePlanes[i].Set(vertices, triangles[i]); } void CColModel::RemoveTrianglePlanes(void) { RwFree(trianglePlanes); trianglePlanes = nil; } void CColModel::SetLinkPtr(CLink *lptr) { assert(trianglePlanes); *(CLink**)ALIGNPTR(&trianglePlanes[numTriangles]) = lptr; } CLink* CColModel::GetLinkPtr(void) { assert(trianglePlanes); return *(CLink**)ALIGNPTR(&trianglePlanes[numTriangles]); } void CColModel::GetTrianglePoint(CVector &v, int i) const { v = vertices[i]; } STARTPATCHES InjectHook(0x4B9C30, (CMatrix& (*)(const CMatrix &src, CMatrix &dst))Invert, PATCH_JUMP); InjectHook(0x40BB70, CCollision::TestSphereBox, PATCH_JUMP); InjectHook(0x40E130, CCollision::TestLineBox, PATCH_JUMP); InjectHook(0x40E5C0, CCollision::TestVerticalLineBox, PATCH_JUMP); InjectHook(0x40EC10, CCollision::TestLineTriangle, PATCH_JUMP); InjectHook(0x40DAA0, CCollision::TestLineSphere, PATCH_JUMP); InjectHook(0x40C580, CCollision::TestSphereTriangle, PATCH_JUMP); InjectHook(0x40F720, CCollision::TestLineOfSight, PATCH_JUMP); InjectHook(0x40B9F0, CCollision::ProcessSphereSphere, PATCH_JUMP); InjectHook(0x40BC00, CCollision::ProcessSphereBox, PATCH_JUMP); InjectHook(0x40E670, CCollision::ProcessLineBox, PATCH_JUMP); InjectHook(0x40DE80, CCollision::ProcessLineSphere, PATCH_JUMP); InjectHook(0x40FB50, CCollision::ProcessVerticalLineTriangle, PATCH_JUMP); InjectHook(0x40F140, CCollision::ProcessLineTriangle, PATCH_JUMP); InjectHook(0x40CE30, CCollision::ProcessSphereTriangle, PATCH_JUMP); InjectHook(0x40F910, CCollision::ProcessLineOfSight, PATCH_JUMP); InjectHook(0x410120, CCollision::ProcessVerticalLine, PATCH_JUMP); InjectHook(0x410BE0, CCollision::ProcessColModels, PATCH_JUMP); InjectHook(0x40B960, CCollision::CalculateTrianglePlanes, PATCH_JUMP); InjectHook(0x411640, &CLink::Remove, PATCH_JUMP); InjectHook(0x411620, &CLink::Insert, PATCH_JUMP); InjectHook(0x4115C0, &CLinkList::Insert, PATCH_JUMP); InjectHook(0x411600, &CLinkList::Remove, PATCH_JUMP); // InjectHook(0x411530, &CLinkList::Init, PATCH_JUMP); InjectHook(0x411E40, (void (CColSphere::*)(float, const CVector&, uint8, uint8))&CColSphere::Set, PATCH_JUMP); InjectHook(0x40B2A0, &CColBox::Set, PATCH_JUMP); InjectHook(0x40B320, &CColLine::ctor, PATCH_JUMP); InjectHook(0x40B350, &CColLine::Set, PATCH_JUMP); InjectHook(0x411E70, &CColTriangle::Set, PATCH_JUMP); InjectHook(0x411EA0, &CColTrianglePlane::Set, PATCH_JUMP); InjectHook(0x412140, &CColTrianglePlane::GetNormal, PATCH_JUMP); InjectHook(0x411680, &CColModel::ctor, PATCH_JUMP); InjectHook(0x4116E0, &CColModel::dtor, PATCH_JUMP); InjectHook(0x411D80, &CColModel::RemoveCollisionVolumes, PATCH_JUMP); InjectHook(0x411CB0, &CColModel::CalculateTrianglePlanes, PATCH_JUMP); InjectHook(0x411D10, &CColModel::RemoveTrianglePlanes, PATCH_JUMP); InjectHook(0x411D40, &CColModel::SetLinkPtr, PATCH_JUMP); InjectHook(0x411D60, &CColModel::GetLinkPtr, PATCH_JUMP); ENDPATCHES