1
0
Fork 0
mirror of https://gitlab.com/SIGBUS/nyaa.git synced 2025-01-25 00:25:12 +00:00

[ES Change] Improve Elasticsearch term quoting (#473)

* Optimize Elasticsearch fullword field

Since the main display_name field ngrams words up to 15 characters,
anything to and under that will already be indexed - the fullword field
(which we have for words longer than 15 characters) needs to index only
words longer than that.

* Preprocess ES terms for better literal matching

This commit adds a new .exact subfield to display_name, which holds a
barely-filtered version of the original title we can do "literal"
matching against. This is not real substring matching, but quoting
terms now actually does something!

Implements a simple preprocessor for the search terms to extract quoted
parts from the search terms, optionally prefixed with - to negate them.
The preprocessor will create a query that'll join all three query-types:
the simple_query_string, must-phrases and must-not-phrases.
This commit is contained in:
Anna-Maria Meriniemi 2018-04-14 03:06:25 +03:00 committed by Arylide
parent 8f9400bb5f
commit 0b78428abc
2 changed files with 91 additions and 7 deletions

View file

@ -23,6 +23,11 @@ settings:
- my_ngram
- word_delimit
- trim_zero
# For exact matching - simple lowercase + whitespace delimiter
exact_analyzer:
tokenizer: whitespace
filter:
- lowercase
# For matching full words longer than the ngram limit (15 chars)
my_fullword_index_analyzer:
type: custom
@ -32,13 +37,19 @@ settings:
filter:
- lowercase
- word_delimit
# These should be enough, as my_index_analyzer will match the rest
# Skip tokens shorter than N characters,
# since they're already indexed in the main field
- fullword_min
filter:
my_ngram:
type: edgeNGram
min_gram: 1
max_gram: 15
fullword_min:
type: length
# Remember to change this if you change the max_gram below!
min: 16
resolution:
type: pattern_capture
patterns: ["(\\d+)[xX](\\d+)"]
@ -85,6 +96,10 @@ mappings:
fullword:
type: text
analyzer: my_fullword_index_analyzer
# Stored for exact phrase matching
exact:
type: text
analyzer: exact_analyzer
created_time:
type: date
# Only in the ES index for generating magnet links

View file

@ -69,6 +69,79 @@ def _generate_query_string(term, category, filter, user):
return params
# For preprocessing ES search terms in _parse_es_search_terms
QUOTED_LITERAL_REGEX = re.compile(r'(?i)(-)?"(.*?)"')
def _es_name_exact_phrase(literal):
''' Returns a Query for a phrase match on the display_name for a given literal '''
return Q({
'match_phrase': {
'display_name.exact': {
'query': literal,
'analyzer': 'exact_analyzer'
}
}
})
def _parse_es_search_terms(search, search_terms):
''' Parse search terms into a query with properly handled literal phrases
(the simple_query_string is not so great with exact results).
For example:
foo bar "hello world" -"exclude this"
will become a must simple_query_string for "foo bar", a must phrase_match for
"hello world" and a must_not for "exclude this".
Returns the search with the generated bool-query added to it. '''
# Literal must and must-not sets
must_set = set()
must_not_set = set()
def literal_matcher(match):
negated = bool(match.group(1))
literal = match.group(2)
if negated:
must_not_set.add(literal)
else:
must_set.add(literal)
# Remove the parsed literal from search terms
return ''
# Remove quoted parts (optionally prepended with -) and store them in the sets
parsed_search_terms = QUOTED_LITERAL_REGEX.sub(literal_matcher, search_terms).strip()
# Create phrase matches (if any)
must_queries = [_es_name_exact_phrase(lit) for lit in must_set]
must_not_queries = [_es_name_exact_phrase(lit) for lit in must_not_set]
if parsed_search_terms:
# Normal text search without the quoted parts
must_queries.append(
Q(
'simple_query_string',
# Query both fields, latter for words with >15 chars
fields=['display_name', 'display_name.fullword'],
analyzer='my_search_analyzer',
default_operator="AND",
query=parsed_search_terms
)
)
if must_queries or must_not_queries:
# Create a combined Query with the positive and negative matches
combined_search_query = Q(
'bool',
must=must_queries,
must_not=must_not_queries
)
search = search.query(combined_search_query)
return search
def search_elastic(term='', user=None, sort='id', order='desc',
category='0_0', quality_filter='0', page=1,
rss=False, admin=False, logged_in_user=None,
@ -165,12 +238,8 @@ def search_elastic(term='', user=None, sort='id', order='desc',
# Apply search term
if term:
s = s.query('simple_query_string',
# Query both fields, latter for words with >15 chars
fields=['display_name', 'display_name.fullword'],
analyzer='my_search_analyzer',
default_operator="AND",
query=term)
# Do some preprocessing on the search terms for literal "" matching
s = _parse_es_search_terms(s, term)
# User view (/user/username)
if user: