1
0
Fork 0
mirror of https://github.com/hb9fxq/gr-digitalhf synced 2024-12-22 15:10:00 +00:00
gr-digitalhf/python/physical_layer/common.py
cmayer 6cf9752275 preparations for XOR scrambling
work on 110C mode (intermediate)
2019-05-14 22:39:57 +02:00

91 lines
3 KiB
Python

## -*- python -*-
import numpy as np
CONST_DTYPE=np.dtype([('points', np.complex64),
('symbols', np.int32)])
SYMB_SCRAMBLE_DTYPE=np.dtype([('symb', np.complex64),
('scramble', np.complex64),
('scramble_xor', np.uint8)])
def make_scr(s1, s2=None, s3=None):
a = np.zeros(len(s1), SYMB_SCRAMBLE_DTYPE)
a['symb'][:] = s1
if s2 is not None:
assert(len(s2) == len(s1))
a['scramble'][:] = s2
if s3 is not None:
assert(len(s3) == len(s1))
a['scramble_xor'][:] = s3
return a
def n_psk(n,x):
"""n-ary PSK constellation"""
return np.complex64(np.exp(2j*np.pi*x/n))
def freq_est(z):
"""Data-Aided Frequency Estimation for Burst Digital Transmission,
Umberto Mengali and M. Morelli, IEEE TRANSACTIONS ON COMMUNICATIONS,
VOL. 45, NO. 1, JANUARY 1997"""
L0 = len(z)
N = L0//2
R = np.zeros(N+1, dtype=np.complex64)
for i in range(N+1):
R[i] = 1.0/(L0-i)*np.sum(z[i:]*np.conj(z[0:L0-i])) ## eq (3)
m = np.arange(N+1, dtype=np.float32)
w = 3*((L0-m)*(L0-m+1)-N*(L0-N))/(N*(4*N*N - 6*N*L0 + 3*L0*L0-1)) ## eq (9)
mod_2pi = lambda x : np.mod(x-np.pi, 2*np.pi) - np.pi
return np.sum(w[1:] * mod_2pi(np.diff(np.angle(R)))) ## eq (8)
class Depuncturer(object):
def __init__(self, repeat=1, puncture_pattern=['1','1']):
assert(repeat >= 1)
self._repeat = repeat
self._num_patterns = num_patterns = len(puncture_pattern)
assert(num_patterns >= 2)
assert(all([len(puncture_pattern[0]) == len(p) for p in puncture_pattern[1:]]))
m = np.array([x=='1' for y in puncture_pattern for x in y])
self._num_unpacked = len(m)
self._num_packed = np.sum(m)
self._pattern = m.reshape(num_patterns, self._num_unpacked//num_patterns).transpose().reshape(1, self._num_unpacked)[0]
self._range_packed = np.arange(self._num_packed)
self._range_unpacked = np.arange(self._num_unpacked)
def process(self, x):
n = len(x)
assert(n%(self._num_packed * self._repeat) == 0)
## (1) unpack
xd = np.zeros(n * self._num_unpacked // self._num_packed, dtype=np.float64)
i = 0
j = 0
while i < len(xd):
xd[(i + self._range_unpacked)[self._pattern]] += x[j + self._range_packed]
j += self._num_packed
i += self._num_unpacked
assert(j == n)
assert(i == len(xd))
if self._repeat == 1:
return xd
## (2) combine repeated data
xu = np.zeros(len(xd) // self._repeat, dtype=np.float64)
i = 0
j = 0
m = self._num_patterns
r = np.arange(m)
while i < len(xu):
for k in range(self._repeat):
xu[i + r] += xd[j + r]
j += m
i += m
assert(i == len(xu))
assert(j == len(xd))
return xu
if __name__ == '__main__':
idx=np.arange(3)
z=np.exp(1j*idx*0.056+1j)
print(freq_est(z)/0.056)