1
0
Fork 0
mirror of https://github.com/hb9fxq/gr-digitalhf synced 2024-11-05 05:55:53 +00:00
gr-digitalhf/lib/adaptive_dfe_impl.cc
2018-10-29 16:07:20 +01:00

523 lines
18 KiB
C++

/* -*- c++ -*- */
/*
* Copyright 2018 hcab14@mail.com.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <gnuradio/io_signature.h>
#include <gnuradio/expj.h>
#include <volk/volk.h>
#include "adaptive_dfe_impl.h"
#define VOLK_SAFE_DELETE(x) \
volk_free(x); \
x = nullptr
namespace gr {
namespace digitalhf {
namespace {
class GILLock {
PyGILState_STATE _state;
public:
GILLock()
:_state(PyGILState_Ensure()) {}
~GILLock() {
PyGILState_Release(_state);
}
} ;
boost::python::numpy::ndarray
complex_vector_to_ndarray(std::vector<gr_complex> const& v) {
return boost::python::numpy::from_data
(&v.front(),
boost::python::numpy::dtype::get_builtin<gr_complex>(),
boost::python::make_tuple(v.size()),
boost::python::make_tuple(sizeof(gr_complex)),
boost::python::object());
}
} // anonymous namespace
adaptive_dfe::sptr
adaptive_dfe::make(int sps, // samples per symbol
int nB, // number of forward FIR taps
int nF, // number of backward FIR taps
int nW, // number of feedback taps
float mu,
float alpha,
std::string python_module_name)
{
return gnuradio::get_initial_sptr
(new adaptive_dfe_impl(sps, nB, nF, nW, mu, alpha, python_module_name));
}
/*
* The private constructor
*/
adaptive_dfe_impl::adaptive_dfe_impl(int sps, // samples per symbol
int nB, // number of forward FIR taps
int nF, // number of backward FIR taps
int nW, // number of feedback taps
float mu,
float alpha,
std::string python_module_name)
: gr::block("adaptive_dfe",
gr::io_signature::make(1, 1, sizeof(gr_complex)),
gr::io_signature::make(1, 1, sizeof(gr_complex)))
, _sps(sps)
, _nB(nB*sps)
, _nF(nF*sps)
, _nW(nW)
, _mu(mu)
, _alpha(alpha)
, _py_module_name(python_module_name)
, _physicalLayer()
, _taps_samples(nullptr)
, _taps_symbols(nullptr)
, _hist_samples(nullptr)
, _hist_symbols(nullptr)
, _hist_sample_index(0)
, _hist_symbol_index(0)
, _sample_counter(0)
, _constellations()
, _npwr()
, _npwr_counter()
, _npwr_max_time_constant(10)
, _constellation_index()
, _samples()
, _symbols()
, _scramble()
, _descrambled_symbols()
, _symbol_counter(0)
, _need_samples(false)
, _save_soft_decisions(false)
, _vec_soft_decisions()
, _msg_port_name(pmt::mp("soft_dec"))
, _msg_metadata(pmt::make_dict())
, _df(0)
, _phase(0)
, _b{0.338187046465954, -0.288839024460507}
, _ud(0)
, _state(WAIT_FOR_PREAMBLE)
{
message_port_register_out(_msg_port_name);
}
/*
* Our virtual destructor.
*/
adaptive_dfe_impl::~adaptive_dfe_impl()
{
_msg_port_name = pmt::PMT_NIL;
_msg_metadata = pmt::PMT_NIL;
VOLK_SAFE_DELETE(_taps_samples);
VOLK_SAFE_DELETE(_taps_symbols);
VOLK_SAFE_DELETE(_hist_samples);
VOLK_SAFE_DELETE(_hist_symbols);
}
void
adaptive_dfe_impl::forecast (int noutput_items, gr_vector_int &ninput_items_required)
{
ninput_items_required[0] = _sps*noutput_items;
}
int
adaptive_dfe_impl::general_work(int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
gr::thread::scoped_lock lock(d_setlock);
gr_complex const* in = (gr_complex const *)input_items[0];
gr_complex *out = (gr_complex *)output_items[0];
int nout = 0;
int i = 0;
for (; i<ninput_items[0] && nout < noutput_items; ++i) {
assert(nout < noutput_items);
if (_state == WAIT_FOR_PREAMBLE) {
insert_sample(in[i]);
uint64_t offset = 0;
float phase_est = 0;
if (get_correlation_tag(i, offset, phase_est)) {
_state = INITIAL_DOPPLER_ESTIMATE;
_sample_counter = 0;
_symbol_counter = 0;
// _symbols.clear();
// _scramble.clear();
_descrambled_symbols.clear();
// _hist_sample_index = 0;
_hist_symbol_index = 0;
std::fill_n(_hist_symbols, 2*_nW, gr_complex(0));
std::fill_n(_taps_samples, _nB+_nF+1, gr_complex(0));
std::fill_n(_taps_symbols, _nW, gr_complex(0));
_samples.clear();
_phase = -phase_est;
_taps_samples[_nB+1] = 1;
_taps_symbols[0] = 1;
GILLock gil_lock;
try {
update_frame_information(_physicalLayer.attr("get_frame")());
} catch (boost::python::error_already_set const&) {
PyErr_Print();
}
}
} // WAIT_FOR_PREAMBLE
if (_state == INITIAL_DOPPLER_ESTIMATE) {
// buffer samples and replay them later once the initial doppler estimate is there
if (_samples.size() == _sps * _symbols.size()) {
GILLock gil_lock;
try {
std::vector<gr_complex> const empty_vec;
// initial doppler estimate
if (!update_doppler_information(_physicalLayer.attr("get_doppler")
(complex_vector_to_ndarray(empty_vec),
complex_vector_to_ndarray(_samples)))) {
_state = WAIT_FOR_PREAMBLE;
continue;
}
} catch (boost::python::error_already_set const&) {
PyErr_Print();
}
// (1) correct all samples in the circular buffer with the inital doppler estimate
for (int j=_nB+1; j<_nB+_nF+1; ++j) {
assert(_hist_sample_index+j < 2*(_nB+_nF+1));
_hist_samples[_hist_sample_index+j] *= gr_expj(-_phase);
update_local_oscillator();
}
// (2) insert all buffered samples and run the adaptive filter for them
// instead of pop_front() we first reverse _samples and then insert back() + pop_back()
// O(N) instead of O(N^2)
std::reverse(_samples.begin(), _samples.end());
while (!_samples.empty() && nout < noutput_items) {
insert_sample(_samples.back());
_sample_counter += 1;
_samples.pop_back();
if ((_sample_counter%_sps) == 0)
out[nout++] = filter();
}
if (_samples.empty()) {
_state = DO_FILTER;
} else {
_state = INITIAL_DOPPLER_ESTIMATE_CONTINUE;
}
continue;
}
_samples.push_back(in[i]);
} // INITIAL_DOPPLER_ESTIMATE_CONTINUE
if (_state == INITIAL_DOPPLER_ESTIMATE_CONTINUE) {
std::cout << "INITIAL_DOPPLER_ESTIMATE_CONTINUE\n";
while (!_samples.empty() && nout < noutput_items) {
insert_sample(_samples.back());
_sample_counter += 1;
_samples.pop_back();
if ((_sample_counter%_sps) == 0)
out[nout++] = filter();
}
if (_samples.empty()) {
_state = DO_FILTER;
} else {
_state = INITIAL_DOPPLER_ESTIMATE_CONTINUE;
}
continue;
} // INITIAL_DOPPLER_ESTIMATE_CONTINUE
if (_state == DO_FILTER) {
if ((_sample_counter%_sps) == 0) {
if (_symbol_counter == _symbols.size()) {
_symbol_counter = 0;
GILLock gil_lock;
try {
update_doppler_information(_physicalLayer.attr("get_doppler")
(complex_vector_to_ndarray(_descrambled_symbols),
complex_vector_to_ndarray(_samples)));
if (!_vec_soft_decisions.empty()) {
unsigned int const bits_per_symbol = _constellations[_constellation_index]->bits_per_symbol();
_msg_metadata = pmt::dict_add(_msg_metadata, pmt::mp("bits_per_symbol"), pmt::from_long(bits_per_symbol));
message_port_pub(_msg_port_name,
pmt::cons(_msg_metadata,
pmt::init_f32vector(_vec_soft_decisions.size(), _vec_soft_decisions)));
_vec_soft_decisions.clear();
}
_samples.clear();
update_frame_information(_physicalLayer.attr("get_frame")());
} catch (boost::python::error_already_set const&) {
PyErr_Print();
}
}
out[nout++] = filter();
}
insert_sample(in[i]);
if (_need_samples)
_samples.push_back(_hist_samples[_hist_sample_index+_nB+1]);
_sample_counter += 1;
} // DO_FILTER
} // next input sample
consume(0, i);
// Tell runtime system how many output items we produced.
return nout;
}
bool adaptive_dfe_impl::start()
{
gr::thread::scoped_lock lock(d_setlock);
// make sure python is ready for threading
if( Py_IsInitialized() ){
GILLock gil_lock;
if(PyEval_ThreadsInitialized() != 1 ){
PyEval_InitThreads();
}
boost::python::numpy::initialize();
} else {
throw std::runtime_error("dont use adaptive_dfe without python!");
}
_taps_samples = (gr_complex*)(volk_malloc( (_nB+_nF+1)*sizeof(gr_complex), volk_get_alignment()));
_taps_symbols = (gr_complex*)(volk_malloc( _nW*sizeof(gr_complex), volk_get_alignment()));
_hist_samples = (gr_complex*)(volk_malloc(2*(_nB+_nF+1)*sizeof(gr_complex), volk_get_alignment()));
_hist_symbols = (gr_complex*)(volk_malloc( 2*_nW*sizeof(gr_complex), volk_get_alignment()));
_samples.clear();
std::fill_n(_hist_samples, 2*(_nB+_nF+1), gr_complex(0));
std::fill_n(_hist_symbols, 2*_nW, gr_complex(0));
std::fill_n(_taps_samples, (_nB+_nF+1), gr_complex(0));
std::fill_n(_taps_symbols, _nW, gr_complex(0));
_taps_samples[_nB+1] = 1;
_taps_symbols[0] = 1;
std::cout << "adaptive_dfe_impl::start() " << _nB << " " << _nF << " " << _mu << " " << _alpha << std::endl;
GILLock gil_lock;
try {
boost::python::object module = boost::python::import(boost::python::str("digitalhf.physical_layer." + _py_module_name));
boost::python::object PhysicalLayer = module.attr("PhysicalLayer");
_physicalLayer = PhysicalLayer(_sps);
update_constellations(_physicalLayer.attr("get_constellations")());
} catch (boost::python::error_already_set const&) {
PyErr_Print();
return false;
}
return true;
}
bool adaptive_dfe_impl::stop()
{
gr::thread::scoped_lock lock(d_setlock);
std::cout << "adaptive_dfe_impl::stop()" << std::endl;
GILLock gil_lock;
_physicalLayer = boost::python::object();
VOLK_SAFE_DELETE(_taps_samples);
VOLK_SAFE_DELETE(_taps_symbols);
VOLK_SAFE_DELETE(_hist_samples);
VOLK_SAFE_DELETE(_hist_symbols);
return true;
}
gr_complex adaptive_dfe_impl::filter() {
gr_complex filter_output = 0;
volk_32fc_x2_dot_prod_32fc(&filter_output,
_hist_samples+_hist_sample_index,
_taps_samples,
_nB+_nF+1);
gr_complex dot_symbols=0;
for (int l=0; l<_nW; ++l) {
assert(_hist_symbol_index+l < 2*_nW);
dot_symbols += _hist_symbols[_hist_symbol_index+l]*_taps_symbols[l];
}
filter_output += dot_symbols;
gr_complex known_symbol = _symbols[_symbol_counter];
bool const is_known = std::abs(known_symbol) > 1e-5;
if (not is_known) { // not known
gr_complex const descrambled_filter_output = std::conj(_scramble[_symbol_counter]) * filter_output;
gr::digital::constellation_sptr constell = _constellations[_constellation_index];
unsigned int jc = constell->decision_maker(&descrambled_filter_output);
gr_complex descrambled_symbol = 0;
constell->map_to_points(jc, &descrambled_symbol);
if (_save_soft_decisions) {
float const err = std::abs(descrambled_filter_output - descrambled_symbol);
_npwr_counter[_constellation_index] += (_npwr_counter[_constellation_index] < _npwr_max_time_constant);
float const alpha = 1.0f/_npwr_counter[_constellation_index];
_npwr[_constellation_index] = (1-alpha)*_npwr[_constellation_index] + alpha*err;
std::vector<float> const soft_dec = constell->calc_soft_dec(descrambled_filter_output, _npwr[_constellation_index]);
std::copy(soft_dec.begin(), soft_dec.end(), std::back_inserter<std::vector<float> >(_vec_soft_decisions));
// std::cout << "soft_dec " << _npwr[_constellation_index] << " : ";
// for (int k=0; k<soft_dec.size(); ++k) {
// std::cout << soft_dec[k] << " ";
// }
// std::cout << "\n";
}
known_symbol = _scramble[_symbol_counter] * descrambled_symbol;
}
gr_complex err = filter_output - known_symbol;
int jMax=0;
float tMax=0;
for (int j=0; j<_nB+_nF+1; ++j) {
assert(_hist_sample_index+j < 2*(_nB+_nF+1));
_taps_samples[j] -= _mu*err*std::conj(_hist_samples[_hist_sample_index+j]);
// if (std::abs(_taps_samples[j]) > tMax) {
// tMax = std::abs(_taps_samples[j]);
// jMax = j;
// }
}
// std::cout << "taps_max: " << jMax << " " << tMax << std::endl;
for (int j=0; j<_nW; ++j) {
assert(_hist_symbol_index+j < 2*_nW);
_taps_symbols[j] -= _mu*err*std::conj(_hist_symbols[_hist_symbol_index+j]) + _alpha*_taps_symbols[j];
}
// if (_sample_counter < 80*5)
// std::cout << "filter: " << _symbol_counter << " " << _sample_counter << " " << filter_output << " " << known_symbol << " " << std::abs(err) << std::endl;
if (is_known || true) {
_hist_symbols[_hist_symbol_index] = _hist_symbols[_hist_symbol_index + _nW] = known_symbol;
if (++_hist_symbol_index == _nW)
_hist_symbol_index = 0;
}
_descrambled_symbols[_symbol_counter] = filter_output*std::conj(_scramble[_symbol_counter]);
return filter_output*std::conj(_scramble[_symbol_counter++]);
}
void adaptive_dfe_impl::set_mode(std::string mode) {
gr::thread::scoped_lock lock(d_setlock);
std::cout << "adaptive_dfe_impl::set_mode " << mode << std::endl;
GILLock gil_lock;
try {
_physicalLayer.attr("set_mode")(mode);
} catch (boost::python::error_already_set const&) {
PyErr_Print();
return;
}
}
void adaptive_dfe_impl::update_constellations(boost::python::object obj)
{
int const n = boost::python::extract<int>(obj.attr("__len__")());
_constellations.resize(n);
_npwr.resize(n);
_npwr_counter.resize(n);
for (int i=0; i<n; ++i) {
boost::python::numpy::ndarray const& array = boost::python::numpy::array(obj[i]);
char const* data = array.get_data();
int const m = array.shape(0);
std::vector<gr_complex> constell(m);
std::vector<int> pre_diff_code(m);
for (int j=0; j<m; ++j) {
std::memcpy(&constell[j], data+9*j, sizeof(gr_complex));
pre_diff_code[j] = (data+9*j)[8];
}
unsigned int const rotational_symmetry = 0;
unsigned int const dimensionality = 1;
_constellations[i] = gr::digital::constellation_calcdist::make(constell, pre_diff_code, rotational_symmetry, dimensionality);
_npwr[i] = 0.0f;
_npwr_counter[i] = 0;
}
}
bool adaptive_dfe_impl::update_frame_information(boost::python::object obj)
{
int const n = boost::python::extract<int>(obj.attr("__len__")());
assert(n==4);
boost::python::numpy::ndarray array = boost::python::numpy::array(obj[0]);
char const* data = array.get_data();
int const m = array.shape(0);
_symbols.resize(m);
_scramble.resize(m);
_descrambled_symbols.resize(m);
_samples.clear();
for (int i=0; i<m; ++i) {
std::memcpy(&_symbols[i], data+16*i, sizeof(gr_complex));
std::memcpy(&_scramble[i], data+16*i+8, sizeof(gr_complex));
// std::cout << "get_frame " << i << " " << _symbols[i] << " " << _scramble[i] << std::endl;
}
_constellation_index = boost::python::extract<int> (obj[1]);
_need_samples = boost::python::extract<bool>(obj[2]);
_save_soft_decisions = boost::python::extract<bool>(obj[3]);
return true;
}
bool adaptive_dfe_impl::update_doppler_information(boost::python::object obj)
{
int const n = boost::python::extract<int>(obj.attr("__len__")());
assert(n==2);
bool const do_continue = boost::python::extract<bool>(obj[0]);
if (!do_continue) {
_state = WAIT_FOR_PREAMBLE;
_phase = 0;
_df = 0;
std::fill_n(_hist_samples, 2*(_nB+_nF+1), gr_complex(0));
_hist_sample_index = 0;
_sample_counter = 0;
return false;
}
float const doppler = boost::python::extract<float>(obj[1]);
update_pll(doppler);
return true;
}
void adaptive_dfe_impl::update_pll(float doppler) {
if (doppler == 0)
return;
float const delta_f = doppler/_sps;
if (_df == 0) { // init
_ud = _df = delta_f;
} else {
float const ud_old = _ud;
_ud = delta_f;
_df +=_b[0]*_ud + _b[1]*ud_old;
}
std::cout << "PLL: " << _df << " " << delta_f << std::endl;
}
void adaptive_dfe_impl::insert_sample(gr_complex z) {
// insert sample into the circular buffer
_hist_samples[_hist_sample_index] = _hist_samples[_hist_sample_index+_nB+_nF+1] = z * gr_expj(-_phase);
if (++_hist_sample_index == _nB+_nF+1)
_hist_sample_index = 0;
update_local_oscillator();
}
void adaptive_dfe_impl:: update_local_oscillator() {
_phase += _df;
if (_phase > M_PI)
_phase -= 2*M_PI;
if (_phase < -M_PI)
_phase += 2*M_PI;
}
bool adaptive_dfe_impl::get_correlation_tag(uint64_t i, uint64_t& offset, float& phase_est) {
std::vector<tag_t> v;
get_tags_in_window(v, 0, i,i+1);
for (int j=0; j<v.size(); ++j) {
std::cout << "tag " << v[j].key << " " << v[j].offset-nitems_read(0) << std::endl;
if (v[j].key == pmt::mp("phase_est")) {
phase_est = pmt::to_double(v[j].value);
std::cout << "phase_est " << v[j].offset <<" " << nitems_read(0) << " " << phase_est << std::endl;
offset = v[j].offset - nitems_read(0);
}
if (v[j].key == pmt::mp("corr_est")) {
double const corr_est = pmt::to_double(v[j].value);
if (v[j].offset - nitems_read(0) == offset)// && corr_est > 10e3)
return true;
}
}
return false;
}
} /* namespace digitalhf */
} /* namespace gr */