mirror of
https://github.com/hb9fxq/gr-digitalhf
synced 2024-11-05 05:55:53 +00:00
368 lines
13 KiB
C++
368 lines
13 KiB
C++
/* -*- c++ -*- */
|
|
/*
|
|
* Copyright 2018 hcab14@mail.com.
|
|
*
|
|
* This is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This software is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this software; see the file COPYING. If not, write to
|
|
* the Free Software Foundation, Inc., 51 Franklin Street,
|
|
* Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <gnuradio/io_signature.h>
|
|
#include <volk/volk.h>
|
|
#include "adaptive_dfe_impl.h"
|
|
|
|
namespace gr {
|
|
namespace digitalhf {
|
|
|
|
namespace {
|
|
class GILLock {
|
|
PyGILState_STATE _state;
|
|
public:
|
|
GILLock()
|
|
:_state(PyGILState_Ensure()) {}
|
|
~GILLock() {
|
|
PyGILState_Release(_state);
|
|
}
|
|
} ;
|
|
}
|
|
|
|
adaptive_dfe::sptr
|
|
adaptive_dfe::make(int sps, // samples per symbol
|
|
int nB, // number of forward FIR taps
|
|
int nF, // number of backward FIR taps
|
|
int nW, // number of feedback taps
|
|
std::string python_module_name)
|
|
{
|
|
return gnuradio::get_initial_sptr
|
|
(new adaptive_dfe_impl(sps, nB, nF, nW, python_module_name));
|
|
}
|
|
|
|
/*
|
|
* The private constructor
|
|
*/
|
|
adaptive_dfe_impl::adaptive_dfe_impl(int sps, // samples per symbol
|
|
int nB, // number of forward FIR taps
|
|
int nF, // number of backward FIR taps
|
|
int nW, // number of feedback taps
|
|
std::string python_module_name)
|
|
: gr::block("adaptive_dfe",
|
|
gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
|
gr::io_signature::make(1, 1, sizeof(gr_complex)))
|
|
, _sps(sps)
|
|
, _nB(nB)
|
|
, _nF(nF)
|
|
, _nW(nW)
|
|
, _mu(0.01)
|
|
, _alpha(0.0005)
|
|
, _py_module_name(python_module_name)
|
|
, _physicalLayer()
|
|
, _taps_samples(nullptr)
|
|
, _taps_symbols(nullptr)
|
|
, _hist_samples(nullptr)
|
|
, _hist_symbols(nullptr)
|
|
, _hist_sample_index(0)
|
|
, _hist_symbol_index(0)
|
|
, _sample_counter(0)
|
|
, _constellations()
|
|
, _constellation_index()
|
|
, _symbols()
|
|
, _scramble()
|
|
, _descrambled_symbols()
|
|
, _symbol_counter(0)
|
|
, _sum_phase_diff(0)
|
|
, _df(0)
|
|
, _phase(0)
|
|
, _b{0.338187046465954, -0.288839024460507}
|
|
, _ud(0)
|
|
, _state(WAIT_FOR_PREAMBLE)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Our virtual destructor.
|
|
*/
|
|
adaptive_dfe_impl::~adaptive_dfe_impl()
|
|
{
|
|
}
|
|
|
|
void
|
|
adaptive_dfe_impl::forecast (int noutput_items, gr_vector_int &ninput_items_required)
|
|
{
|
|
ninput_items_required[0] = _sps*noutput_items;
|
|
}
|
|
|
|
int
|
|
adaptive_dfe_impl::general_work(int noutput_items,
|
|
gr_vector_int &ninput_items,
|
|
gr_vector_const_void_star &input_items,
|
|
gr_vector_void_star &output_items)
|
|
{
|
|
gr::thread::scoped_lock lock(d_setlock);
|
|
gr_complex const* in = (gr_complex const *)input_items[0];
|
|
gr_complex *out = (gr_complex *)output_items[0];
|
|
|
|
int nout = 0;
|
|
int i = 0;
|
|
for (; i<ninput_items[0] && nout < noutput_items; ++i) {
|
|
assert(nout < noutput_items);
|
|
_phase += _df;
|
|
if (_phase > M_PI)
|
|
_phase -= 2*M_PI;
|
|
if (_phase < -M_PI)
|
|
_phase += 2*M_PI;
|
|
|
|
_hist_samples[_hist_sample_index] = _hist_samples[_hist_sample_index+_nB+_nF+1] = in[i] * std::exp(gr_complex(0,_phase));
|
|
if (++_hist_sample_index == _nB+_nF+1)
|
|
_hist_sample_index = 0;
|
|
|
|
if (_state == WAIT_FOR_PREAMBLE) {
|
|
std::vector<tag_t> v;
|
|
get_tags_in_window(v, 0, i,i+1);
|
|
float phase_est = 0;
|
|
float corr_est = 0;
|
|
uint64_t offset = 0;
|
|
for (int j=0; j<v.size(); ++j) {
|
|
std::cout << "tag " << v[j].key << " " << v[j].offset-nitems_read(0) << std::endl;
|
|
if (v[j].key == pmt::mp("phase_est")) {
|
|
phase_est = pmt::to_double(v[j].value);
|
|
std::cout << "phase_est " << v[j].offset <<" " << nitems_read(0) << " " << phase_est << std::endl;
|
|
}
|
|
if (v[j].key == pmt::mp("corr_est")) {
|
|
corr_est = pmt::to_double(v[j].value);
|
|
std::cout << "corr_est " << v[j].offset << " " << nitems_read(0) << " "
|
|
<< pmt::is_number(v[j].value) << " "
|
|
<< pmt::is_integer(v[j].value) << " "
|
|
<< pmt::is_real(v[j].value) << " "
|
|
<< pmt::to_double(v[j].value)
|
|
<< std::endl;
|
|
if (corr_est > 130e3) {
|
|
offset = v[j].offset - nitems_read(0);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (corr_est > 130e3) {
|
|
_state = DO_FILTER;
|
|
_sample_counter = 0;
|
|
_symbol_counter = 0;
|
|
// _symbols.clear();
|
|
// _scramble.clear();
|
|
_descrambled_symbols.clear();
|
|
// _hist_sample_index = 0;
|
|
_hist_symbol_index = 0;
|
|
std::fill_n(_hist_symbols, 2*_nW, gr_complex(0));
|
|
std::fill_n(_taps_samples, _nB+_nF+1, gr_complex(0));
|
|
std::fill_n(_taps_symbols, _nW, gr_complex(0));
|
|
//_phase = -phase_est;
|
|
_taps_samples[_nB+1] = std::exp(gr_complex(0, -phase_est));
|
|
_taps_symbols[0] = 1;
|
|
GILLock lock;
|
|
try {
|
|
update_frame_information(_physicalLayer.attr("get_frame")());
|
|
} catch (boost::python::error_already_set const&) {
|
|
PyErr_Print();
|
|
}
|
|
}
|
|
}
|
|
if (_state == DO_FILTER) {
|
|
gr_complex dot_samples = 0;
|
|
// volk_32fc_x2_dot_prod_32fc(&dot_samples,
|
|
// &_hist_samples.front()+_hist_sample_index,
|
|
// &_taps_samples.front(),
|
|
// _taps_samples.size());
|
|
gr_complex filter_output = dot_samples;
|
|
// if (_sample_counter < 80*5)
|
|
// std::cout << "SAMPLE " << _sample_counter << " " << dot_samples << std::endl;
|
|
if ((_sample_counter%_sps) == 0) {
|
|
if (_symbol_counter == _symbols.size()) {
|
|
_symbol_counter = 0;
|
|
GILLock lock;
|
|
try {
|
|
boost::python::numpy::ndarray s = boost::python::numpy::from_data(&_descrambled_symbols.front(),
|
|
boost::python::numpy::dtype::get_builtin<gr_complex>(),
|
|
boost::python::make_tuple(_descrambled_symbols.size()),
|
|
boost::python::make_tuple(sizeof(gr_complex)),
|
|
boost::python::object());
|
|
update_doppler_information(_physicalLayer.attr("get_doppler")(s));
|
|
update_frame_information(_physicalLayer.attr("get_frame")());
|
|
} catch (boost::python::error_already_set const&) {
|
|
PyErr_Print();
|
|
}
|
|
}
|
|
gr_complex known_symbol = _symbols[_symbol_counter];
|
|
bool is_known = true;
|
|
for (int k=0; k<1; ++k) {
|
|
filter_output = 0;
|
|
#if 1
|
|
volk_32fc_x2_dot_prod_32fc(&filter_output,
|
|
_hist_samples+_hist_sample_index,
|
|
_taps_samples,
|
|
_nB+_nF+1);
|
|
#else
|
|
for (int l=0; l<_nB+_nF+1; ++l) {
|
|
assert(_hist_sample_index+l < 2*(_nB+_nF+1));
|
|
filter_output += _hist_samples[_hist_sample_index+l]*_taps_samples[l];
|
|
}
|
|
#endif
|
|
gr_complex dot_symbols=0;
|
|
for (int l=0; l<_nW; ++l) {
|
|
assert(_hist_symbol_index+l < 2*_nW);
|
|
dot_symbols += _hist_symbols[_hist_symbol_index+l]*_taps_symbols[l];
|
|
}
|
|
filter_output += dot_symbols;
|
|
if (std::abs(known_symbol) < 1e-5) { // not known
|
|
is_known = false;
|
|
gr_complex descrambled_filter_output = std::conj(_scramble[_symbol_counter]) * filter_output;
|
|
gr::digital::constellation_sptr constell = _constellations[_constellation_index];
|
|
unsigned int jc = constell->decision_maker(&descrambled_filter_output);
|
|
constell->map_to_points(jc, &descrambled_filter_output);
|
|
known_symbol = _scramble[_symbol_counter] * descrambled_filter_output;
|
|
}
|
|
gr_complex err = filter_output - known_symbol;
|
|
if (_symbol_counter >= 0) {
|
|
for (int j=0; j<_nB+_nF+1; ++j) {
|
|
_taps_samples[j] -= _mu*err*std::conj(_hist_samples[_hist_sample_index+j]);
|
|
}
|
|
for (int j=0; j<_nW; ++j) {
|
|
assert(_hist_symbol_index+j < 2*_nW);
|
|
_taps_symbols[j] -= _mu*err*std::conj(_hist_symbols[_hist_symbol_index+j]) + _alpha*_taps_symbols[j];
|
|
}
|
|
}
|
|
// std::cout << "filter: " << _symbol_counter << " " << _sample_counter << " " << filter_output << " " << known_symbol << " " << std::abs(err) << std::endl;
|
|
}
|
|
if (is_known) {
|
|
_taps_symbols[_hist_symbol_index] = _taps_symbols[_hist_symbol_index + _nW] = known_symbol;
|
|
if (++_hist_symbol_index == _nW)
|
|
_hist_symbol_index = 0;
|
|
}
|
|
_descrambled_symbols[_symbol_counter] = filter_output*std::conj(_scramble[_symbol_counter]);
|
|
out[nout++] = filter_output;
|
|
++_symbol_counter;
|
|
}
|
|
_sample_counter += 1;
|
|
}
|
|
}
|
|
|
|
consume(0, i);
|
|
|
|
// Tell runtime system how many output items we produced.
|
|
return nout;
|
|
}
|
|
|
|
bool adaptive_dfe_impl::start()
|
|
{
|
|
// make sure python is ready for threading
|
|
if( Py_IsInitialized() ){
|
|
GILLock lock;
|
|
if(PyEval_ThreadsInitialized() != 1 ){
|
|
PyEval_InitThreads();
|
|
}
|
|
boost::python::numpy::initialize();
|
|
} else {
|
|
throw std::runtime_error("dont use es_pyhandler without python!");
|
|
}
|
|
_taps_samples = (gr_complex*)(volk_malloc( (_nB+_nF+1)*sizeof(gr_complex), volk_get_alignment()));
|
|
_taps_symbols = (gr_complex*)(volk_malloc( _nW*sizeof(gr_complex), volk_get_alignment()));
|
|
_hist_samples = (gr_complex*)(volk_malloc(2*(_nB+_nF+1)*sizeof(gr_complex), volk_get_alignment()));
|
|
_hist_symbols = (gr_complex*)(volk_malloc( 2*_nW*sizeof(gr_complex), volk_get_alignment()));
|
|
_taps_samples[_nB+1] = 1;
|
|
_taps_symbols[0] = 1;
|
|
|
|
std::cout << "adaptive_dfe_impl::start()" << std::endl;
|
|
GILLock lock;
|
|
try {
|
|
boost::python::object module = boost::python::import(boost::python::str("digitalhf.physical_layer." + _py_module_name));
|
|
boost::python::object PhysicalLayer = module.attr("PhysicalLayer");
|
|
_physicalLayer = PhysicalLayer();
|
|
update_constellations(_physicalLayer.attr("get_constellations")());
|
|
} catch (boost::python::error_already_set const&) {
|
|
PyErr_Print();
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
bool adaptive_dfe_impl::stop()
|
|
{
|
|
std::cout << "adaptive_dfe_impl::stop()" << std::endl;
|
|
GILLock lock;
|
|
_physicalLayer = boost::python::object();
|
|
volk_free(_taps_samples);
|
|
volk_free(_taps_symbols);
|
|
volk_free(_hist_samples);
|
|
volk_free(_hist_symbols);
|
|
return true;
|
|
}
|
|
|
|
void adaptive_dfe_impl::update_constellations(boost::python::object obj)
|
|
{
|
|
int const n = boost::python::extract<int>(obj.attr("__len__")());
|
|
_constellations.resize(n);
|
|
for (int i=0; i<n; ++i) {
|
|
boost::python::numpy::ndarray const& array = boost::python::numpy::array(obj[i]);
|
|
char const* data = array.get_data();
|
|
int const m = array.shape(0);
|
|
std::vector<gr_complex> constell(m);
|
|
std::vector<int> pre_diff_code(m);
|
|
for (int j=0; j<m; ++j) {
|
|
std::memcpy(&constell[j], data+9*j, sizeof(gr_complex));
|
|
pre_diff_code[j] = (data+9*j)[8];
|
|
}
|
|
unsigned int const rotational_symmetry = 0;
|
|
unsigned int const dimensionality = 1;
|
|
_constellations[i] = gr::digital::constellation_calcdist::make(constell, pre_diff_code, rotational_symmetry, dimensionality);
|
|
}
|
|
}
|
|
void adaptive_dfe_impl::update_frame_information(boost::python::object obj)
|
|
{
|
|
int const n = boost::python::extract<int>(obj.attr("__len__")());
|
|
assert(n==2);
|
|
boost::python::numpy::ndarray array = boost::python::numpy::array(obj[0]);
|
|
char const* data = array.get_data();
|
|
int const m = array.shape(0);
|
|
_symbols.resize(m);
|
|
_scramble.resize(m);
|
|
_descrambled_symbols.resize(m);
|
|
for (int i=0; i<m; ++i) {
|
|
std::memcpy(&_symbols[i], data+16*i, sizeof(gr_complex));
|
|
std::memcpy(&_scramble[i], data+16*i+8, sizeof(gr_complex));
|
|
// std::cout << "get_frame " << i << " " << _symbols[i] << " " << _scramble[i] << std::endl;
|
|
}
|
|
_constellation_index = boost::python::extract<int>(obj[1]);
|
|
}
|
|
void adaptive_dfe_impl::update_doppler_information(boost::python::object obj)
|
|
{
|
|
int const n = boost::python::extract<int>(obj.attr("__len__")());
|
|
assert(n==2);
|
|
double const do_continue = boost::python::extract<bool>(obj[0]);
|
|
double const doppler = boost::python::extract<float>(obj[1]);
|
|
|
|
float delta_f = doppler/_sps;
|
|
if (_df == 0) { // init
|
|
_ud = _df = -delta_f;
|
|
} else {
|
|
const float ud_old = _ud;
|
|
_ud = -delta_f;
|
|
_df +=_b[0]*_ud + _b[1]*ud_old;
|
|
}
|
|
std::cout << "PLL: " << _df << " " << delta_f << std::endl;
|
|
_sum_phase_diff = 0;
|
|
}
|
|
|
|
} /* namespace digitalhf */
|
|
} /* namespace gr */
|