## -*- python -*- from __future__ import print_function import numpy as np import common from digitalhf.digitalhf_swig import viterbi27 ## ---- constellations ----------------------------------------------------------- BPSK=np.array(zip(np.exp(2j*np.pi*np.arange(2)/2), [0,1]), common.CONST_DTYPE) QPSK=np.array(zip(np.exp(2j*np.pi*np.arange(4)/4), [0,1,3,2]), common.CONST_DTYPE) PSK8=np.array(zip(np.exp(2j*np.pi*np.arange(8)/8), [1,0,2,3,7,6,4,5]), common.CONST_DTYPE) QAM16=np.array( zip([+0.866025+0.500000j, 0.500000+0.866025j, 1.000000+0.000000j, 0.258819+0.258819j, -0.500000+0.866025j, 0.000000+1.000000j, -0.866025+0.500000j, -0.258819+0.258819j, +0.500000-0.866025j, 0.000000-1.000000j, 0.866025-0.500000j, 0.258819-0.258819j, -0.866025-0.500000j, -0.500000-0.866025j, -1.000000+0.000000j, -0.258819-0.258819j], range(16)), common.CONST_DTYPE) QAM32=np.array( zip([+0.866380+0.499386j, 0.984849+0.173415j, 0.499386+0.866380j, 0.173415+0.984849j, +0.520246+0.520246j, 0.520246+0.173415j, 0.173415+0.520246j, 0.173415+0.173415j, -0.866380+0.499386j, -0.984849+0.173415j, -0.499386+0.866380j, -0.173415+0.984849j, -0.520246+0.520246j, -0.520246+0.173415j, -0.173415+0.520246j, -0.173415+0.173415j, +0.866380-0.499386j, 0.984849-0.173415j, 0.499386-0.866380j, 0.173415-0.984849j, +0.520246-0.520246j, 0.520246-0.173415j, 0.173415-0.520246j, 0.173415-0.173415j, -0.866380-0.499386j, -0.984849-0.173415j, -0.499386-0.866380j, -0.173415-0.984849j, -0.520246-0.520246j, -0.520246-0.173415j, -0.173415-0.520246j, -0.173415-0.173415j], range(32)), common.CONST_DTYPE) QAM64=np.array( zip([+1.000000+0.000000j, 0.822878+0.568218j, 0.821137+0.152996j, 0.932897+0.360142j, +0.000000-1.000000j, 0.822878-0.568218j, 0.821137-0.152996j, 0.932897-0.360142j, +0.568218+0.822878j, 0.588429+0.588429j, 0.588429+0.117686j, 0.588429+0.353057j, +0.568218-0.822878j, 0.588429-0.588429j, 0.588429-0.117686j, 0.588429-0.353057j, +0.152996+0.821137j, 0.117686+0.588429j, 0.117686+0.117686j, 0.117686+0.353057j, +0.152996-0.821137j, 0.117686-0.588429j, 0.117686-0.117686j, 0.117686-0.353057j, +0.360142+0.932897j, 0.353057+0.588429j, 0.353057+0.117686j, 0.353057+0.353057j, +0.360142-0.932897j, 0.353057-0.588429j, 0.353057-0.117686j, 0.353057-0.353057j, +0.000000+1.000000j, -0.822878+0.568218j, -0.821137+0.152996j, -0.932897+0.360142j, -1.000000+0.000000j, -0.822878-0.568218j, -0.821137-0.152996j, -0.932897-0.360142j, -0.568218+0.822878j, -0.588429+0.588429j, -0.588429+0.117686j, -0.588429+0.353057j, -0.568218-0.822878j, -0.588429-0.588429j, -0.588429-0.117686j, -0.588429-0.353057j, -0.152996+0.821137j, -0.117686+0.588429j, -0.117686+0.117686j, -0.117686+0.353057j, -0.152996-0.821137j, -0.117686-0.588429j, -0.117686-0.117686j, -0.117686-0.353057j, -0.360142+0.932897j, -0.353057+0.588429j, -0.353057+0.117686j, -0.353057+0.353057j, -0.360142-0.932897j, -0.353057-0.588429j, -0.353057-0.117686j, -0.353057-0.353057j], range(64)), common.CONST_DTYPE) ## for test QAM64p = QAM64[(3,24,56,35,39,60,28,7),] QAM64p['symbols'] = range(8) ## not used ## ---- Walsh-4 codes ---------------------------------------------------------- WALSH4 = np.array([[0,0,0,0], # 0 - 00 [0,1,0,1], # 1 - 01 [0,0,1,1], # 2 - 10 [0,1,1,0]], # 3 - 11 dtype=np.uint8) FROM_WALSH4 = -np.ones(256, dtype=np.int8) for i in range(4): FROM_WALSH4[np.packbits(WALSH4[i][:])[0]] = i ## ---- constellation indices --------------------------------------------------- MODE_BPSK = 0 MODE_QPSK = 1 MODE_8PSK = 2 MODE_16QAM = 3 MODE_32QAM = 4 MODE_64QAM = 5 MODE_64QAMp = 6 ## ---- data scrambler ----------------------------------------------------------- class ScrambleData(object): """data scrambling sequence generator""" def __init__(self): self.reset() def reset(self): self._state = np.array([0,0,0,0,0,0,0,0,1], dtype=np.bool) self._taps = np.array([0,0,0,0,1,0,0,0,1], dtype=np.bool) def next(self, num_bits): r = np.packbits(self._state[1:])[0]&((1<= 0: ## ---- data frames success = False self._frame_counter += 1 if self._frame_counter == 1: success = self.decode_reinserted_preamble(symbols) elif self._frame_counter == 2 and self.is_HFXL(): success = self.decode_hfxl_preamble(symbols) else: success = self.get_data_frame_quality(symbols) if self.is_plain_110C() or self.is_12800bpsBurst() or self._frame_counter >= 2: return [self.make_data_frame(success),self._constellation_index,success,success] if self.is_HFXL() and self._frame_counter == 1: return [self.make_hfxl_preamble(success),MODE_QPSK,success,False] def get_doppler(self, iq_samples): """quality check and doppler estimation for preamble""" r = {'success': False, ## -- quality flag 'doppler': 0} ## -- doppler estimate (rad/symb) if len(iq_samples) != 0: sps = self._sps m = 23*sps idx = np.arange(m) idx2 = np.arange(m+23*sps) _,zp = self.get_preamble_z() n = len(zp) cc = np.correlate(iq_samples, zp) imax = np.argmax(np.abs(cc[0:23*sps])) print('imax=', imax, len(iq_samples)) pks = [np.correlate(iq_samples[imax+i*m+idx], zp[i*m+idx])[0] for i in range(n//m)] val = [np.mean(np.abs(np.correlate(iq_samples[imax+i*m+idx2], zp[i*m+idx])[11*sps+np.arange(-2*sps,2*sps)])) for i in range((n//m)-1)] tests = np.abs(pks[0:-1])/val r['success'] = bool(np.median(tests) > 2.0) print('test:', np.abs(pks), tests) if r['success']: print('doppler apks', np.abs(pks)) print('doppler ppks', np.angle(pks), np.diff(np.unwrap(np.angle(pks)))/m, np.mean(np.diff(np.unwrap(np.angle(pks)))/m)) r['doppler'] = common.freq_est(pks)/m print(r) return r def set_mode(self, mode): pass def get_mode(self): return self._mode_description def get_preamble_quality(self, symbols): print('get_preamble_quality', np.abs(np.mean(symbols[-32:])), symbols[-32:]) return np.abs(np.mean(symbols[-32:])) > 0.5 def get_data_frame_quality(self, symbols): print('get_data_frame_quality', np.mean(symbols[-31:])) return np.abs(np.mean(symbols[-31:])) > 0.5 def is_plain_110C(self): return self._mode_name == '110C' def is_12800bpsBurst(self): return self._mode_name == '12800bpsBurst' def is_HFXL(self): return self._mode_name == 'HFXL' def decode_reinserted_preamble(self, symbols): ## decode D0,D1,D2 success = True z = np.array([np.mean(symbols[-71+i*13:-71+(i+1)*13]) for i in range(3)]) if np.mean(np.abs(z)) < 0.4: return False print('decode_reinserted_preamble', '\nHH', symbols[0:-71], '\nD0', symbols[-71 :-71+13], '\nD1', symbols[-71+13:-71+26], '\nD2', symbols[-71+26:-71+39], '\nTT', symbols[-71+4*13:], z) d0d1d2 = map(np.uint8, np.mod(np.round(np.angle(z)/np.pi*2),4)) self._dibits = dibits = [TO_DIBIT[idx] for idx in d0d1d2] mode = {'rate': tuple([x[0] for x in dibits]), 'interleaver': tuple([x[1] for x in dibits])} if self._mode != {}: success = (mode == self._mode) if not success: return success self._mode = mode self._rate_info = rate_info = TO_RATE[self._mode['rate']] self._intl_info = intl_info = TO_INTERLEAVER[self._mode['interleaver']] self._mode_name = '110C' if mode['rate']==(1,1,0) and mode['interleaver']==(0,0,1): self._mode_name = '12800bpsBurst' if rate_info['baud'] == 'HFXL': self._mode_name = 'HFXL' self._mode_description = '%s rate=%s intl=%s' % (self._mode_name, rate_info['baud'], intl_info['id']) print('======== rate,interleaver:', rate_info, intl_info, self._mode_name) self._data_scramble_xor = np.zeros(256, dtype=np.uint8) self._data_scramble = np.ones (256, dtype=np.complex64) if self.is_12800bpsBurst(): self._scrp = ScrambleDataP() self._constellation_index = MODE_BPSK elif self.is_HFXL(): self._scramble.reset() num_bits = 3 iscr = np.array([self._scramble.next(num_bits) for _ in range(256)], dtype=np.uint8) self._data_scramble[:] = common.n_psk(8, iscr) self._constellation_index = MODE_8PSK pass elif self.is_plain_110C(): self._interleaver_frames = intl_info['frames'] baud = rate_info['baud'] intl_id = intl_info['id'] intl_size = INTL_SIZE[baud][intl_id] intl_incr = INTL_INCR[baud][intl_id] if self._deintl_depunct == None: self._deintl_depunct = DeIntl_DePunct(size=intl_size, incr=intl_incr) self._constellation_index = rate_info['ci'] print('constellation index', self._constellation_index) self._scramble.reset() num_bits = max(3, rate_info['bits_per_symbol']) iscr = np.array([self._scramble.next(num_bits) for _ in range(256)], dtype=np.uint8) print('iscr=', iscr) if rate_info['ci'] > MODE_8PSK: self._data_scramble_xor[:] = iscr else: self._data_scramble[:] = common.n_psk(8, iscr) else: ## TODO: generate an error message success = False return success def decode_hfxl_preamble(self, symbols): ## decode D0,D1,D2 success = True z = np.mean(symbols[0:7*13].reshape(7,13),1) print('decode_hfxl_preamble: z=', z, np.mean(np.abs(z))) if np.mean(np.abs(z)) < 0.4: return False ds = map(np.uint8, np.mod(np.round(np.angle(z)/np.pi*2),4)) self._dibits += [TO_DIBIT[idx] for idx in ds] l = tuple([x[1] for x in self._dibits[0:4]]) try: self._constellation_index = TO_HFXL_MOD[l] except KeyError: print('decode_hfxl_preamble: dibits new list', l) self._constellation_index = MODE_8PSK if self._constellation_index > MODE_8PSK: self._data_scramble[:] = 1 print('decode_hfxl_preamble: ds=', ds, l) print('decode_hfxl_preamble: dibits=', self._dibits) return success def make_reinserted_preamble(self, offset, success): """ offset= 0 -> 1st reinsesrted preamble offset=-72 -> all following reinserted preambles""" a = common.make_scr(REINSERTED_PREAMBLE[offset:], REINSERTED_PREAMBLE[offset:]) a['symb'][-71:-71+3*13] = 0 ## D0,D1,D2 print('make_reinserted_preamble', offset, success, len(a['symb'])) if not success: self._frame_counter = -2 return a def make_hfxl_preamble(self, success): a = common.make_scr(HFXL_PREAMBLE, HFXL_PREAMBLE) a['symb'][0:7*13] = 0 if not success: self._frame_counter = -2 return a def make_data_frame(self, success): self._preamble_offset = -72 ## all following reinserted preambles start at index -72 a = np.zeros(256+31, common.SYMB_SCRAMBLE_DTYPE) if self.is_12800bpsBurst(): a['scramble'][:256] = QAM64p['points'][[self._scrp.next() for _ in range(256)]] elif self.is_HFXL(): a['scramble'][:256] = self._data_scramble elif self.is_plain_110C(): a['scramble'][:256] = self._data_scramble else: ## TODO: generate an error message pass a['scramble_xor'][:256] = self._data_scramble_xor if self.is_plain_110C() or self.is_12800bpsBurst(): n = (self._frame_counter-1)%72 if self._frame_counter == 72: self._frame_counter = -1 ## trigger reinserted preamble m = n%18 if m == 0: cnt = n//18 self._mp = (1,1,1,1,1,1,1,0)+self._mode['rate']+self._mode['interleaver']+MP_COUNTER[cnt]+(0,) print('new mini-probe signs n=',n,'m=',m, 'cnt=',cnt, self._mp) print('make_data_frame', m, self._mp[m]) a['symb'][256:] = MINI_PROBE[self._mp[m]] a['scramble'][256:] = MINI_PROBE[self._mp[m]] elif self.is_HFXL(): ## only plus sign mini-probes are used a['symb'][256:] = MINI_PROBE[0] a['scramble'][256:] = MINI_PROBE[0] else: pass # TODO if not success: self._frame_counter = -2 return a def decode_soft_dec(self, soft_dec): if self.is_12800bpsBurst(): print('decode_soft_dec', len(soft_dec)) n = len(soft_dec) // 32 soft_bits = np.zeros(2*n, dtype=np.float32) for i in range(n): w = np.sum(soft_dec[32*i:32*(i+1)].reshape(8,4),0) b = FROM_WALSH4[np.packbits(w>0)[0]] ## TODO use 2nd half of WALSH bits abs_soft_dec = np.mean(np.abs(w)) print('WALSH', i, w, b, abs_soft_dec) soft_bits[2*i] = abs_soft_dec*(2*(b>>1)-1) soft_bits[2*i+1] = abs_soft_dec*(2*(b &1)-1) return soft_bits>0,100.0 elif self.is_HFXL(): ## TODO return np.zeros(0, dtype=np.float32),0.0 elif self.is_plain_110C(): r = self._deintl_depunct.load(soft_dec) if r.shape[0] == 0: return np.zeros(0, dtype=np.float32),0.0 self._viterbi_decoder.reset() decoded_bits = np.roll(self._viterbi_decoder.udpate(r), 7) print('bits=', decoded_bits[:100]) quality = 120.0*self._viterbi_decoder.quality()/(2*len(decoded_bits)) print('quality={}% ({},{})'.format(quality, self._viterbi_decoder.quality(), len(decoded_bits))) return decoded_bits,quality else: return np.zeros(0, dtype=np.float32),0.0 @staticmethod def get_preamble(): """preamble symbols + scrambler""" return common.make_scr(PREAMBLE, PREAMBLE) def get_preamble_z(self): """preamble symbols for preamble correlation""" return 2,np.array([z for z in PREAMBLE for _ in range(self._sps)]) if __name__ == '__main__': print(PREAMBLE) z = common.n_psk(8,PREAMBLE) cc = [np.sum(z[0:23]*np.conj(z[23*i:23*i+23])) for i in range(6)] print(np.abs(cc)) print(np.angle(cc)/np.pi*4) print(all(z==PhysicalLayer.get_preamble()['symb'])) print(len(PhysicalLayer.get_preamble()['symb'])) s = ScrambleData() print([s.next(1) for _ in range(511)]) print([s.next(1) for _ in range(511)] == [s.next(1) for _ in range(511)]) #print(QAM64) #print(QAM32) #print(QAM16) #print(PSK8) #print(QPSK) #print(BPSK) #print(MINI_PROBE_PLUS) #print(MINI_PROBE_MINUS) #print(MINI_PROBE_PLUS*MINI_PROBE_MINUS) #for i in range(len(QAM64)): # print(QAM64['points'][i]) print([s.next(6) for _ in range(256)]) s = ScrambleDataP() assert(np.all(s.get_seq()[0:20]==np.array([0,2,4,3,3,6,4,5,7,6,7,0,5,5,4,3,5,4,3,7], dtype=np.uint8)))