## -*- python -*- import numpy as np from gnuradio import digital class PhysicalLayer(object): """Physical layer description for STANAG 4285""" MODE_BPSK=0 MODE_QPSK=1 MODE_8PSK=2 def __init__(self, sps): """intialization""" self._sps = sps self._mode = self.MODE_BPSK self._frame_counter = 0 self._is_first_frame = True self._constellations = [self.make_psk(2, [0,1]), self.make_psk(4, [0,1,3,2]), self.make_psk(8, [1,0,2,3,6,7,5,4])] self._preamble = self.get_preamble() self._data = self.get_data() def set_mode(self, mode): """set phase modultation type""" print('set_mode', mode) self._mode = int(mode) def get_constellations(self): return self._constellations def get_frame(self): """returns a tuple describing the frame: [0] ... known+unknown symbols and scrambling [1] ... modulation type after descrambling [2] ... a boolean indicating whethere or not raw IQ samples needed""" print('-------------------- get_frame --------------------', self._frame_counter) return [self._preamble,self.MODE_BPSK,True] if self.is_preamble() else [self._data,self._mode,False] def get_doppler(self, symbols, iq_samples): """returns a tuple [0] ... quality flag [1] ... doppler estimate (rad/symbol) if available""" print('-------------------- get_doppler --------------------', self._frame_counter,len(symbols),len(iq_samples)) success,doppler = self.quality_preamble(symbols,iq_samples) if self.is_preamble() else self.quality_data(symbols) if len(symbols) != 0: self._frame_counter = (self._frame_counter+1)&1 if success else 0 self._is_first_frame = not success return success,doppler def is_preamble(self): return self._frame_counter == 0 def quality_preamble(self, symbols, iq_samples): """quality check and doppler estimation for preamble""" success = True doppler = 0 if len(iq_samples) != 0: zp = [x for x in self._preamble['symb'][9:40] for i in range(self._sps)] cc = np.array([np.sum(iq_samples[ i*5:(31+i)*5]*zp) for i in range(49)]) imax = np.argmax(np.abs(cc[0:18])) pks = cc[(imax,imax+15,imax+16,imax+31),] apks = np.abs(pks) success = np.mean(apks[(0,3),]) > 2*np.mean(apks[(1,2),]) doppler = np.diff(np.unwrap(np.angle(pks[(0,3),])))[0]/31 if success else 0 if len(symbols) != 0: idx = range(30,80) if self._is_first_frame else range(80) z = symbols[idx]*np.conj(self._preamble['symb'][idx]) success = np.sum(np.real(z)<0) < 30 return success,doppler def quality_data(self, s): """quality check for the data frame""" known_symbols = np.mod(range(176),48)>=32 success = np.sum(np.real(s[known_symbols])<0) < 20 return success,0 ## no doppler estimate for data frames @staticmethod def get_preamble(): """preamble symbols + scrambler(=1)""" state = np.array([1,1,0,1,0], dtype=np.bool) taps = np.array([0,0,1,0,1], dtype=np.bool) p = np.zeros(80, dtype=np.uint8) for i in range(80): p[i] = state[-1] state = np.concatenate(([np.sum(state&taps)&1], state[0:-1])) a = np.zeros(80, dtype=[('symb',np.complex64), ('scramble', np.complex64)]) ## BPSK modulation constellation = PhysicalLayer.make_psk(2,range(2))['points'] a['symb'] = constellation[p,] a['scramble'] = 1 return a @staticmethod def get_data(): """data symbols + scrambler; for unknown symbols 'symb'=0""" state = np.array([1,1,1,1,1,1,1,1,1], dtype=np.bool) taps = np.array([0,0,0,0,1,0,0,0,1], dtype=np.bool) p = np.zeros(176, dtype=np.uint8) for i in range(176): p[i] = np.sum(state[-3:]*[4,2,1]) for j in range(3): state = np.concatenate(([np.sum(state&taps)&1], state[0:-1])) a=np.zeros(176, dtype=[('symb',np.complex64), ('scramble', np.complex64)]) ## 8PSK modulation constellation = PhysicalLayer.make_psk(8,range(8))['points'] a['scramble'] = constellation[p,] known_symbols = np.mod(range(176),48)>=32 a['symb'][known_symbols] = a['scramble'][known_symbols] return a @staticmethod def make_psk(n, gray_code): """generates n-PSK constellation data""" c = np.zeros(n, dtype=[('points', np.complex64), ('symbols', np.uint8)]) c['points'] = np.exp(2*np.pi*1j*np.array(range(n))/n) c['symbols'] = gray_code return c ## for now not used (doppler estimation after adaptive filtering does not work) @staticmethod def data_aided_frequency_estimation(x,c): """Data-Aided Frequency Estimation for Burst Digital Transmission, Umberto Mengali and M. Morelli, IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 45, NO. 1, JANUARY 1997""" z = x*np.conj(c) ## eq (2) L0 = len(z) N = L0//2 R = np.zeros(N, dtype=np.complex64) for i in range(N): R[i] = 1.0/(L0-i)*np.sum(z[i:]*np.conj(z[0:L0-i])) ## eq (3) m = np.array(range(N), dtype=np.float) w = 3*((L0-m)*(L0-m+1)-N*(L0-N))/(N*(4*N*N - 6*N*L0 + 3*L0*L0-1)) ## eq (9) mod_2pi = lambda x : np.mod(x-np.pi, 2*np.pi) - np.pi fd = np.sum(w[1:] * mod_2pi(np.diff(np.angle(R)))) ## eq (8) return fd