1
0
Fork 0
mirror of https://github.com/hb9fxq/gr-digitalhf synced 2024-12-21 23:09:59 +00:00

custom allocator (VOLK) / filter update generalization

This commit is contained in:
Christoph Mayer 2019-09-09 16:04:06 +02:00
parent 659fc1099a
commit c6c590a3d9
8 changed files with 311 additions and 47 deletions

View file

@ -33,9 +33,8 @@
#include "adaptive_dfe_impl.h"
#define VOLK_SAFE_DELETE(x) \
volk_free(x); \
x = nullptr
#include "lms.hpp"
#include "rls.hpp"
namespace gr {
namespace digitalhf {
@ -71,9 +70,9 @@ adaptive_dfe_impl::adaptive_dfe_impl(int sps, // samples per symbol
, _mu(mu)
, _alpha(alpha)
, _use_symbol_taps(true)
, _taps_samples(nullptr)
, _taps_symbols(nullptr)
, _hist_symbols(nullptr)
, _taps_samples()
, _taps_symbols()
, _hist_symbols()
, _hist_symbol_index(0)
, _constellations()
, _npwr()
@ -89,11 +88,12 @@ adaptive_dfe_impl::adaptive_dfe_impl(int sps, // samples per symbol
, _msg_ports{{"soft_dec", pmt::intern("soft_dec")},
{"frame_info", pmt::intern("frame_info")}}
, _msg_metadata(pmt::make_dict())
, _state(WAIT_FOR_PREAMBLE)
, _num_samples_since_filter_update(0)
, _rotated_samples()
, _rotator()
, _control_loop(2*M_PI/100, 5e-2, -5e-2)
, _state(WAIT_FOR_PREAMBLE)
, _filter_update()
{
GR_LOG_DECLARE_LOGPTR(d_logger);
GR_LOG_ASSIGN_LOGPTR(d_logger, "adaptive_dfe");
@ -115,9 +115,6 @@ adaptive_dfe_impl::adaptive_dfe_impl(int sps, // samples per symbol
adaptive_dfe_impl::~adaptive_dfe_impl()
{
_msg_metadata = pmt::PMT_NIL;
VOLK_SAFE_DELETE(_taps_samples);
VOLK_SAFE_DELETE(_taps_symbols);
VOLK_SAFE_DELETE(_hist_symbols);
}
void
@ -162,6 +159,7 @@ adaptive_dfe_impl::general_work(int noutput_items,
_state = WAIT_FOR_FRAME_INFO;
GR_LOG_DEBUG(d_logger, "got preamble tag > wait for frame info");
}
_filter_update->reset();
break;
} // WAIT_FOR_PREAMBLE
case WAIT_FOR_FRAME_INFO: {
@ -208,7 +206,7 @@ adaptive_dfe_impl::general_work(int noutput_items,
assert(i+_nF < nin && i-1-_nB >= 0);
out_symb[nout] = filter(&_rotated_samples.front() + i - _nB,
&_rotated_samples.front() + i + _nF+1);
std::memcpy(&out_taps[(_nB+_nF+1)*nout], _taps_samples, (_nB+_nF+1)*sizeof(gr_complex));
std::memcpy(&out_taps[(_nB+_nF+1)*nout], &_taps_samples.front(), (_nB+_nF+1)*sizeof(gr_complex));
++nout;
} // next sample
consume(0, ninput_processed);
@ -221,23 +219,23 @@ adaptive_dfe_impl::general_work(int noutput_items,
bool adaptive_dfe_impl::start()
{
gr::thread::scoped_lock lock(d_setlock);
_taps_samples = (gr_complex*)(volk_malloc((_nB+_nF+1)*sizeof(gr_complex), volk_get_alignment()));
_last_taps_samples = (gr_complex*)(volk_malloc((_nB+_nF+1)*sizeof(gr_complex), volk_get_alignment()));
_taps_symbols = (gr_complex*)(volk_malloc( _nW*sizeof(gr_complex), volk_get_alignment()));
_hist_symbols = (gr_complex*)(volk_malloc( 2*_nW*sizeof(gr_complex), volk_get_alignment()));
_taps_samples.resize(_nB+_nF+1);
_last_taps_samples.resize(_nB+_nF+1);
_taps_symbols.resize(_nW);
_hist_symbols.resize(2*_nW);
reset_filter();
GR_LOG_DEBUG(d_logger,str(boost::format("adaptive_dfe_impl::start() nB=%d nF=%d mu=%f alpha=%f")
% _nB % _nF % _mu % _alpha));
//_filter_update = lms::make(_mu);
_filter_update = rls::make(0.001, 0.9999);
return true;
}
bool adaptive_dfe_impl::stop()
{
gr::thread::scoped_lock lock(d_setlock);
GR_LOG_DEBUG(d_logger, "adaptive_dfe_impl::stop()");
VOLK_SAFE_DELETE(_taps_samples);
VOLK_SAFE_DELETE(_last_taps_samples);
VOLK_SAFE_DELETE(_taps_symbols);
VOLK_SAFE_DELETE(_hist_symbols);
_filter_update.reset();
return true;
}
@ -249,7 +247,7 @@ gr_complex adaptive_dfe_impl::filter(gr_complex const* start, gr_complex const*
// (1a) taps_samples
volk_32fc_x2_dot_prod_32fc(&filter_output,
start,
_taps_samples,
&_taps_samples.front(),
_nB+_nF+1);
// (1b) taps_symbols
gr_complex dot_symbols(0);
@ -287,13 +285,15 @@ gr_complex adaptive_dfe_impl::filter(gr_complex const* start, gr_complex const*
_num_samples_since_filter_update += _sps;
// (3a) update of adaptive filter taps
gr_complex const err = filter_output - known_symbol;
gr_complex const err = known_symbol - filter_output;
if (std::abs(err)>0.7)
std::cout << "err= " << std::abs(err) << std::endl;
// taps_samples
gr_complex const* gain = _filter_update->update(start, end);
for (int j=0; j<_nB+_nF+1; ++j) {
_last_taps_samples[j] = _taps_samples[j];
_taps_samples[j] -= _mu*err*std::conj(start[j]);
_taps_samples[j] += _mu*std::conj(start[j]) * err;
// _taps_samples[j] += gain[j] * err;
}
// taps_symbols
if (_use_symbol_taps) {
@ -335,8 +335,8 @@ gr_complex adaptive_dfe_impl::filter(gr_complex const* start, gr_complex const*
int
adaptive_dfe_impl::recenter_filter_taps() {
#if 0
ssize_t const _idx_max = std::distance(_taps_samples,
std::max_element(_taps_samples+_nB+1-3*_sps, _taps_samples+_nB+1+3*_sps,
ssize_t const _idx_max = std::distance(_taps_samples.begin(),
std::max_element(_taps_samples.begin()+_nB+1-3*_sps, _taps_samples.begin()+_nB+1+3*_sps,
[](gr_complex a, gr_complex b) {
return std::norm(a) < std::norm(b);
}));
@ -354,17 +354,17 @@ adaptive_dfe_impl::recenter_filter_taps() {
// maximum is right of the center tap
// -> shift taps to the left left
GR_LOG_DEBUG(d_logger, "shift left");
std::copy(_taps_samples+4*_sps, _taps_samples+_nB+_nF+1, _taps_samples);
std::fill_n(_taps_samples+_nB+_nF+1-4*_sps, 4*_sps, gr_complex(0));
std::copy(_taps_samples.begin()+4*_sps, _taps_samples.begin()+_nB+_nF+1, _taps_samples.begin());
std::fill_n(_taps_samples.begin()+_nB+_nF+1-4*_sps, 4*_sps, gr_complex(0));
return +4*_sps;
}
if (idx_max-_nB-1 < -2*_sps) {
// maximum is left of the center tap
// -> shift taps to the right
GR_LOG_DEBUG(d_logger, "shift right");
std::copy_backward(_taps_samples, _taps_samples+_nB+_nF+1-4*_sps,
_taps_samples+_nB+_nF+1);
std::fill_n(_taps_samples, 4*_sps, gr_complex(0));
std::copy_backward(_taps_samples.begin(), _taps_samples.begin()+_nB+_nF+1-4*_sps,
_taps_samples.begin()+_nB+_nF+1);
std::fill_n(_taps_samples.begin(), 4*_sps, gr_complex(0));
return -4*_sps;
}
return 0;
@ -372,10 +372,10 @@ adaptive_dfe_impl::recenter_filter_taps() {
void adaptive_dfe_impl::reset_filter()
{
std::fill_n(_taps_samples, _nB+_nF+1, gr_complex(0));
std::fill_n(_last_taps_samples, _nB+_nF+1, gr_complex(0));
std::fill_n(_taps_symbols, _nW, gr_complex(0));
std::fill_n(_hist_symbols, 2*_nW, gr_complex(0));
std::fill(_taps_samples.begin(), _taps_samples.end(), gr_complex(0));
std::fill(_last_taps_samples.begin(), _last_taps_samples.end(), gr_complex(0));
std::fill(_taps_symbols.begin(), _taps_symbols.end(), gr_complex(0));
std::fill(_hist_symbols.begin(), _hist_symbols.end(), gr_complex(0));
_taps_symbols[0] = 1;
_hist_symbol_index = 0;
_num_samples_since_filter_update = 0;
@ -387,11 +387,11 @@ void adaptive_dfe_impl::publish_frame_info()
GR_LOG_DEBUG(d_logger, str(boost::format("publish_frame_info %d == %d") % _descrambled_symbols.size() % _symbols.size()));
data = pmt::dict_add(data,
pmt::intern("symbols"),
pmt::init_c32vector(_descrambled_symbols.size(), &_descrambled_symbols.front()));
pmt::init_c32vector(_descrambled_symbols.size(), _descrambled_symbols));
// for (int i=0; i<_vec_soft_decisions.size(); ++i)
// _vec_soft_decisions[i] = std::max(-1.0f, std::min(1.0f, _vec_soft_decisions[i]));
data = pmt::dict_add(data,
pmt::intern("soft_dec"), pmt::init_f32vector(_vec_soft_decisions.size(), &_vec_soft_decisions.front()));
pmt::intern("soft_dec"), pmt::init_f32vector(_vec_soft_decisions.size(), _vec_soft_decisions));
message_port_pub(_msg_ports["frame_info"], data);
_descrambled_symbols.clear();
}

View file

@ -26,6 +26,9 @@
#include <gnuradio/digital/constellation.h>
#include <digitalhf/adaptive_dfe.h>
#include "filter_update.hpp"
#include "volk_allocator.hpp"
namespace gr {
namespace digitalhf {
@ -56,6 +59,9 @@ private:
class adaptive_dfe_impl : public adaptive_dfe {
private:
typedef std::vector<gr_complex, volk_allocator<gr_complex> > gr_complex_vec_type;
// typedef std::vector<gr_complex> gr_complex_vec_type;
int _sps;
int _nB, _nF, _nW;
int _nGuard;
@ -65,25 +71,21 @@ private:
bool _use_symbol_taps;
// module name w.r.t. digitalhf.physical_layer containing a PhysicalLayer class
// std::string _py_module_name;
// boost::python::object _physicalLayer; // class instance of physical layer description
gr_complex_vec_type _taps_samples;
gr_complex_vec_type _taps_symbols;
gr_complex_vec_type _last_taps_samples;
gr_complex* _taps_samples;
gr_complex* _taps_symbols;
gr_complex* _last_taps_samples;
gr_complex* _hist_symbols;
gr_complex_vec_type _hist_symbols;
int _hist_symbol_index;
std::vector<gr::digital::constellation_sptr> _constellations;
std::vector<constellation_distance_filter> _npwr;
int _npwr_max_time_constant;
int _constellation_index;
std::vector<gr_complex> _symbols;
std::vector<gr_complex> _scramble; // PSK-8 scramble symbols
std::vector<gr_complex> _symbols;
std::vector<gr_complex> _scramble; // PSK-8 scramble symbols
std::vector<std::array<int,8> > _scramble_xor; // signs for XOR scrambling
std::vector<gr_complex> _descrambled_symbols;
std::vector<gr_complex> _descrambled_symbols;
int _symbol_counter;
bool _save_soft_decisions;
@ -92,7 +94,7 @@ private:
pmt::pmt_t _msg_metadata;
int _num_samples_since_filter_update;
std::vector<gr_complex> _rotated_samples;
gr_complex_vec_type _rotated_samples;
blocks::rotator _rotator;
gr::blocks::control_loop _control_loop;
@ -102,6 +104,7 @@ private:
DO_FILTER
} _state;
filter_update::sptr _filter_update;
// void update_constellations(boost::python::object obj);
void update_constellations(pmt::pmt_t );
void update_frame_info(pmt::pmt_t );

29
lib/filter_update.hpp Normal file
View file

@ -0,0 +1,29 @@
// -*- C++ -*-
#ifndef _LIB_FILTER_UPDATE_HPP_
#define _LIB_FILTER_UPDATE_HPP_
#include <memory>
#include <string>
#include <boost/noncopyable.hpp>
#include <gnuradio/gr_complex.h>
namespace gr {
namespace digitalhf {
class filter_update : private boost::noncopyable {
public:
typedef std::unique_ptr<filter_update> sptr;
virtual void reset() = 0;
virtual gr_complex const* update(gr_complex const*, gr_complex const*) = 0;
protected:
private:
} ;
} // namespace digitalhf
} // namespace gr
#endif // _LIB_FILTER_UPDATE_HPP_

45
lib/lms.cc Normal file
View file

@ -0,0 +1,45 @@
// -*- C++ -*-
#include <cassert>
#include "lms.hpp"
#include <volk/volk.h>
namespace gr {
namespace digitalhf {
filter_update::sptr lms::make(float mu) {
return filter_update::sptr(new lms(mu));
}
lms::lms(float mu)
: _mu(mu)
, _gain() {
}
lms::~lms() {
}
void lms::resize(size_t n) {
if (_gain.size() == n)
return;
_gain.resize(n);
std::fill_n(_gain.begin(), n, 0);
}
void lms::reset() {
std::fill_n(_gain.begin(), _gain.size(), 0);
}
gr_complex const* lms::update(gr_complex const* beg,
gr_complex const* end) {
assert(end-beg > 0);
size_t n = end - beg;
resize(n);
for (size_t i=0; i<n; ++i)
_gain[i] = _mu * std::conj(beg[i]);
return &_gain.front();
}
} // namespace digitalhf
} // namespace gr

35
lib/lms.hpp Normal file
View file

@ -0,0 +1,35 @@
// -*- c++ -*-
#ifndef _LIB_LMS_HPP_
#define _LIB_LMS_HPP_
#include <vector>
#include "filter_update.hpp"
#include "volk_allocator.hpp"
namespace gr {
namespace digitalhf {
class lms : public filter_update {
public:
lms(float mu);
virtual ~lms();
static sptr make(float mu);
virtual void reset();
virtual gr_complex const* update(gr_complex const*, gr_complex const*);
protected:
void resize(size_t);
private:
float _mu;
std::vector<gr_complex, volk_allocator<gr_complex> > _gain;
} ;
} // namespace digitalhf
} // namespace gr
#endif // _LIB_LMS_HPP_

72
lib/rls.cc Normal file
View file

@ -0,0 +1,72 @@
// -*- C++ -*-
#include <cassert>
#include "rls.hpp"
#include <volk/volk.h>
namespace gr {
namespace digitalhf {
filter_update::sptr rls::make(float delta, float lambda) {
return filter_update::sptr(new rls(delta, lambda));
}
rls::rls(float delta, float lambda)
: _delta(delta)
, _lambda(lambda)
, _gain()
, _inv_corr() {
}
rls::~rls() {
}
void rls::resize(size_t n) {
if (_gain.size() == n && _inv_corr.size() == n*n)
return;
_gain.resize(n);
_inv_corr.resize(n*n);
reset();
}
void rls::reset() {
size_t const n = _gain.size();
std::fill_n(_gain.begin(), n, 0);
std::fill_n(_inv_corr.begin(), n*n, 0);
for (size_t i=0; i<n; ++i)
_inv_corr[n*i +i] = gr_complex(_delta, 0);
}
gr_complex const* rls::update(gr_complex const* beg,
gr_complex const* end) {
assert(end-beg > 0);
unsigned const n = end - beg;
resize(n);
std::vector<gr_complex, volk_allocator<gr_complex> > pu(n), tmp(n);
//pu.resize(n);
for (unsigned i=0; i<n; ++i)
volk_32fc_x2_dot_prod_32fc(&pu[i], &_inv_corr[n*i], beg, n);
gr_complex uPu = 0;
volk_32fc_x2_conjugate_dot_prod_32fc(&uPu, &pu[0], beg, n);
for (unsigned i=0; i<n; ++i)
_gain[i] = std::conj(pu[i])/(_lambda + std::real(uPu));
for (unsigned i=0; i<n; ++i) {
unsigned const k = n*i;
#if 0
for (unsigned j=0; j<n; ++j)
_inv_corr[k+j] = (_inv_corr[k+j] - pu[i]*_gain[j]) / _lambda;
#else
volk_32fc_s32fc_multiply_32fc(&tmp[0], &_gain[0], -pu[i], n);
volk_32fc_x2_add_32fc(&_inv_corr[k], &_inv_corr[k], &tmp[0], n);
volk_32f_s32f_multiply_32f((float*)&_inv_corr[k], (float const*)&_inv_corr[k], 1.0f/_lambda, 2*n);
#endif
_inv_corr[k+i] += _delta;
}
return &_gain.front();
}
} // namespace digitalhf
} // namespace gr

37
lib/rls.hpp Normal file
View file

@ -0,0 +1,37 @@
// -*- c++ -*-
#ifndef _LIB_RLS_HPP_
#define _LIB_RLS_HPP_
#include <vector>
#include "filter_update.hpp"
#include "volk_allocator.hpp"
namespace gr {
namespace digitalhf {
class rls : public filter_update {
public:
rls(float delta, float lambda);
virtual ~rls();
static sptr make(float delta, float lambda);
virtual void reset();
virtual gr_complex const* update(gr_complex const*, gr_complex const*);
protected:
void resize(size_t);
private:
float _delta;
float _lambda;
std::vector<gr_complex, volk_allocator<gr_complex> > _gain;
std::vector<gr_complex, volk_allocator<gr_complex> > _inv_corr;
} ;
} // namespace digitalhf
} // namespace gr
#endif // _LIB_RLS_HPP_

43
lib/volk_allocator.hpp Normal file
View file

@ -0,0 +1,43 @@
// -*- c++ -*-
#ifndef _LIB_VOLK_ALLOCATOR_HPP_
#define _LIB_VOLK_ALLOCATOR_HPP_
#include <cstdlib>
#include <limits>
#include <volk/volk.h>
namespace gr {
namespace digitalhf {
// see https://en.cppreference.com/w/cpp/named_req/Allocator
template <class T>
struct volk_allocator {
typedef T value_type;
volk_allocator() = default;
template <class U> constexpr volk_allocator(const volk_allocator<U>&) noexcept {}
T* allocate(std::size_t n) {
if (n > std::numeric_limits<std::size_t>::max() / sizeof(T)) throw std::bad_alloc();
if (auto p = static_cast<T*>(volk_malloc(n*sizeof(T), volk_get_alignment())))
return p;
throw std::bad_alloc();
}
void deallocate(T* p, std::size_t) noexcept { volk_free(p); }
} ;
template <class T, class U>
bool operator==(const volk_allocator<T>&, const volk_allocator<U>&) { return true; }
template <class T, class U>
bool operator!=(const volk_allocator<T>&, const volk_allocator<U>&) { return false; }
} // namespace digitalhf
} // namespace gr
#endif // _LIB_VOLK_ALLOCATOR_HPP_