1
0
Fork 0
mirror of https://github.com/hb9fxq/gr-digitalhf synced 2024-11-05 05:55:53 +00:00
gr-digitalhf/lib/adaptive_dfe_impl.cc

597 lines
22 KiB
C++
Raw Normal View History

2018-10-24 18:17:58 +00:00
/* -*- c++ -*- */
/*
* Copyright 2018 hcab14@mail.com.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
2018-10-31 11:36:09 +00:00
#include <boost/format.hpp>
#include <gnuradio/expj.h>
2018-10-31 11:36:09 +00:00
#include <gnuradio/io_signature.h>
#include <gnuradio/logger.h>
#include <volk/volk.h>
2018-10-31 11:36:09 +00:00
2018-10-24 18:17:58 +00:00
#include "adaptive_dfe_impl.h"
#define VOLK_SAFE_DELETE(x) \
2018-10-29 15:07:20 +00:00
volk_free(x); \
x = nullptr
2018-10-24 18:17:58 +00:00
namespace gr {
namespace digitalhf {
namespace {
class GILLock {
PyGILState_STATE _state;
public:
2018-10-24 18:17:58 +00:00
GILLock()
:_state(PyGILState_Ensure()) {}
~GILLock() {
PyGILState_Release(_state);
}
} ;
boost::python::numpy::ndarray
complex_vector_to_ndarray(std::vector<gr_complex> const& v) {
return boost::python::numpy::from_data
(&v.front(),
boost::python::numpy::dtype::get_builtin<gr_complex>(),
boost::python::make_tuple(v.size()),
boost::python::make_tuple(sizeof(gr_complex)),
boost::python::object());
2018-10-24 18:17:58 +00:00
}
} // anonymous namespace
2018-10-24 18:17:58 +00:00
adaptive_dfe::sptr
adaptive_dfe::make(int sps, // samples per symbol
int nB, // number of forward FIR taps
int nF, // number of backward FIR taps
int nW, // number of feedback taps
float mu,
float alpha,
2018-10-25 16:01:24 +00:00
std::string python_module_name)
2018-10-24 18:17:58 +00:00
{
return gnuradio::get_initial_sptr
(new adaptive_dfe_impl(sps, nB, nF, nW, mu, alpha, python_module_name));
2018-10-24 18:17:58 +00:00
}
/*
* The private constructor
*/
adaptive_dfe_impl::adaptive_dfe_impl(int sps, // samples per symbol
int nB, // number of forward FIR taps
int nF, // number of backward FIR taps
int nW, // number of feedback taps
float mu,
float alpha,
2018-10-25 16:01:24 +00:00
std::string python_module_name)
2018-10-24 18:17:58 +00:00
: gr::block("adaptive_dfe",
gr::io_signature::make(1, 1, sizeof(gr_complex)),
gr::io_signature::make(1, 1, sizeof(gr_complex)))
2018-10-24 18:17:58 +00:00
, _sps(sps)
, _nB(nB*sps)
, _nF(nF*sps)
2018-10-24 18:17:58 +00:00
, _nW(nW)
, _mu(mu)
, _alpha(alpha)
2018-10-25 16:01:24 +00:00
, _py_module_name(python_module_name)
2018-10-24 18:17:58 +00:00
, _physicalLayer()
, _taps_samples(nullptr)
, _taps_symbols(nullptr)
, _hist_samples(nullptr)
, _hist_symbols(nullptr)
, _hist_sample_index(0)
, _hist_symbol_index(0)
2018-10-31 11:36:09 +00:00
, _ignore_filter_updates(0)
, _saved_samples()
, _sample_counter(0)
2018-10-25 16:01:24 +00:00
, _constellations()
, _npwr()
, _npwr_counter()
, _npwr_max_time_constant(10)
2018-10-25 16:01:24 +00:00
, _constellation_index()
, _samples()
2018-10-25 16:01:24 +00:00
, _symbols()
, _scramble()
, _descrambled_symbols()
, _symbol_counter(0)
, _need_samples(false)
2018-10-29 15:07:20 +00:00
, _save_soft_decisions(false)
, _vec_soft_decisions()
, _msg_port_name(pmt::mp("soft_dec"))
, _msg_metadata(pmt::make_dict())
, _df(0)
, _phase(0)
, _b{0.338187046465954, -0.288839024460507}
, _ud(0)
, _state(WAIT_FOR_PREAMBLE)
2018-10-25 16:01:24 +00:00
{
2018-10-31 11:36:09 +00:00
GR_LOG_DECLARE_LOGPTR(d_logger);
GR_LOG_ASSIGN_LOGPTR(d_logger, "adaptive_dfe");
2018-10-29 15:07:20 +00:00
message_port_register_out(_msg_port_name);
2018-10-24 18:17:58 +00:00
}
/*
* Our virtual destructor.
*/
adaptive_dfe_impl::~adaptive_dfe_impl()
{
2018-10-29 15:07:20 +00:00
_msg_port_name = pmt::PMT_NIL;
_msg_metadata = pmt::PMT_NIL;
VOLK_SAFE_DELETE(_taps_samples);
VOLK_SAFE_DELETE(_taps_symbols);
VOLK_SAFE_DELETE(_hist_samples);
VOLK_SAFE_DELETE(_hist_symbols);
2018-10-24 18:17:58 +00:00
}
void
adaptive_dfe_impl::forecast (int noutput_items, gr_vector_int &ninput_items_required)
{
ninput_items_required[0] = _sps*noutput_items;
2018-10-24 18:17:58 +00:00
}
int
adaptive_dfe_impl::general_work(int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
gr::thread::scoped_lock lock(d_setlock);
2018-10-25 16:01:24 +00:00
gr_complex const* in = (gr_complex const *)input_items[0];
gr_complex *out = (gr_complex *)output_items[0];
2018-10-24 18:17:58 +00:00
int nout = 0; // counter for produced output items
int i = 0; // counter for consumed input items
2018-10-31 11:36:09 +00:00
for (; i<ninput_items[0] && nout < noutput_items;) {
assert(nout < noutput_items);
switch (_state) {
case WAIT_FOR_PREAMBLE: {
insert_sample(in[i++]);
uint64_t offset = 0;
float phase_est = 0;
if (get_correlation_tag(i, offset, phase_est)) {
GR_LOG_DEBUG(d_logger, "next state > INITIAL_DOPPLER_ESTIMATE");
_state = INITIAL_DOPPLER_ESTIMATE;
_sample_counter = 0;
_symbol_counter = 0;
// _symbols.clear();
// _scramble.clear();
_descrambled_symbols.clear();
// _hist_sample_index = 0;
_hist_symbol_index = 0;
_ignore_filter_updates = 0;
_saved_samples.clear();
std::fill_n(_hist_symbols, 2*_nW, gr_complex(0));
std::fill_n(_taps_samples, _nB+_nF+1, gr_complex(0));
std::fill_n(_taps_symbols, _nW, gr_complex(0));
_samples.clear();
_phase = -phase_est;
_taps_samples[_nB+1] = 0.01;
_taps_symbols[0] = 1;
GILLock gil_lock;
try {
update_frame_information(_physicalLayer.attr("get_frame")());
} catch (boost::python::error_already_set const&) {
PyErr_Print();
}
}
break;
} // WAIT_FOR_PREAMBLE
case INITIAL_DOPPLER_ESTIMATE: {
_samples.push_back(in[i++]);
// buffer samples and replay them later once the initial doppler estimate is there
if (_samples.size() == _sps * _symbols.size()) {
GILLock gil_lock;
try {
std::vector<gr_complex> const empty_vec;
// initial doppler estimate
if (!update_doppler_information(_physicalLayer.attr("get_doppler")
(complex_vector_to_ndarray(empty_vec),
complex_vector_to_ndarray(_samples)))) {
GR_LOG_DEBUG(d_logger, "next state > WAIT_FOR_PREAMBLE");
_state = WAIT_FOR_PREAMBLE;
break;
}
} catch (boost::python::error_already_set const&) {
PyErr_Print();
}
// (1) correct all samples in the circular buffer with the inital doppler estimate
for (int j=_nB+1; j<_nB+_nF+1; ++j) {
assert(_hist_sample_index+j < 2*(_nB+_nF+1));
_hist_samples[_hist_sample_index+j] *= gr_expj(-_phase);
update_local_oscillator();
}
// (2) insert all buffered samples and run the adaptive filter for them
// instead of pop_front() we first reverse _samples and then insert back() + pop_back()
// O(N) instead of O(N^2)
std::reverse(_samples.begin(), _samples.end());
while (!_samples.empty() && nout < noutput_items) {
insert_sample(_samples.back());
_sample_counter += 1;
_samples.pop_back();
if ((_sample_counter%_sps) == 0)
out[nout++] = filter();
}
if (_samples.empty()) {
GR_LOG_DEBUG(d_logger,"next state > DO_FILTER");
_state = DO_FILTER;
break;
} else {
GR_LOG_DEBUG(d_logger, "next state > INITIAL_DOPPLER_ESTIMATE_CONTINUE");
_state = INITIAL_DOPPLER_ESTIMATE_CONTINUE;
break;
}
}
} // INITIAL_DOPPLER_ESTIMATE_CONTINUE
case INITIAL_DOPPLER_ESTIMATE_CONTINUE: {
GR_LOG_DEBUG(d_logger, "INITIAL_DOPPLER_ESTIMATE_CONTINUE");
while (!_samples.empty() && nout < noutput_items) {
insert_sample(_samples.back());
_sample_counter += 1;
_samples.pop_back();
if ((_sample_counter%_sps) == 0)
out[nout++] = filter();
}
if (_samples.empty()) {
GR_LOG_DEBUG(d_logger, "next state > DO_FILTER");
_state = DO_FILTER;
} else {
GR_LOG_DEBUG(d_logger, "next state > INITIAL_DOPPLER_ESTIMATE_CONTINUE");
_state = INITIAL_DOPPLER_ESTIMATE_CONTINUE;
}
break;
} // INITIAL_DOPPLER_ESTIMATE_CONTINUE
case DO_FILTER: {
if ((_sample_counter%_sps) == 0) {
if (_symbol_counter == _symbols.size()) { // frame is ready
_symbol_counter = 0;
GILLock gil_lock;
try {
// update doppler estimate
if (!update_doppler_information(_physicalLayer.attr("get_doppler")
(complex_vector_to_ndarray(_descrambled_symbols),
complex_vector_to_ndarray(_samples)))) {
GR_LOG_DEBUG(d_logger, "next state > WAIT_FOR_PREAMBLE");
_state = WAIT_FOR_PREAMBLE;
break;
}
// publish soft decisions
if (!_vec_soft_decisions.empty()) {
unsigned int const bits_per_symbol = _constellations[_constellation_index]->bits_per_symbol();
_msg_metadata = pmt::dict_add(_msg_metadata, pmt::mp("bits_per_symbol"), pmt::from_long(bits_per_symbol));
message_port_pub(_msg_port_name,
pmt::cons(_msg_metadata,
pmt::init_f32vector(_vec_soft_decisions.size(), _vec_soft_decisions)));
_vec_soft_decisions.clear();
}
_samples.clear();
// get information about the following frame
update_frame_information(_physicalLayer.attr("get_frame")());
} catch (boost::python::error_already_set const&) {
PyErr_Print();
2018-10-29 15:07:20 +00:00
}
} // frame is ready
if (_ignore_filter_updates == 0) {
out[nout++] = filter();
if (_symbol_counter+1 == _symbols.size())
recenter_filter_taps();
} else {
_ignore_filter_updates -= 1;
}
} // (_sample_counter%_sps) == 0
if (_need_samples) {
_samples.push_back(_hist_samples[_hist_sample_index+_nB+1]);
}
if (_saved_samples.empty()) {
insert_sample(in[i++]);
2018-10-31 11:36:09 +00:00
} else {
insert_sample(_saved_samples.back());
_saved_samples.pop_back();
}
_sample_counter += 1;
} // DO_FILTER
} // switch _state
} // next input sample
2018-10-24 18:17:58 +00:00
consume(0, i);
2018-10-24 18:17:58 +00:00
// Tell runtime system how many output items we produced.
return nout;
2018-10-24 18:17:58 +00:00
}
bool adaptive_dfe_impl::start()
{
gr::thread::scoped_lock lock(d_setlock);
// make sure python is ready for threading
if( Py_IsInitialized() ){
GILLock gil_lock;
if(PyEval_ThreadsInitialized() != 1 ){
PyEval_InitThreads();
}
boost::python::numpy::initialize();
} else {
throw std::runtime_error("dont use adaptive_dfe without python!");
}
_taps_samples = (gr_complex*)(volk_malloc( (_nB+_nF+1)*sizeof(gr_complex), volk_get_alignment()));
_taps_symbols = (gr_complex*)(volk_malloc( _nW*sizeof(gr_complex), volk_get_alignment()));
_hist_samples = (gr_complex*)(volk_malloc(2*(_nB+_nF+1)*sizeof(gr_complex), volk_get_alignment()));
_hist_symbols = (gr_complex*)(volk_malloc( 2*_nW*sizeof(gr_complex), volk_get_alignment()));
_samples.clear();
std::fill_n(_hist_samples, 2*(_nB+_nF+1), gr_complex(0));
std::fill_n(_hist_symbols, 2*_nW, gr_complex(0));
std::fill_n(_taps_samples, (_nB+_nF+1), gr_complex(0));
std::fill_n(_taps_symbols, _nW, gr_complex(0));
2018-10-31 11:36:09 +00:00
_taps_samples[_nB+1] = 0.01;
_taps_symbols[0] = 1;
2018-10-31 11:36:09 +00:00
GR_LOG_DEBUG(d_logger,str(boost::format("adaptive_dfe_impl::start() nB=%d nF=%d mu=%f alpha=%f")
% _nB % _nF % _mu % _alpha));
GILLock gil_lock;
2018-10-24 18:17:58 +00:00
try {
2018-10-25 16:01:24 +00:00
boost::python::object module = boost::python::import(boost::python::str("digitalhf.physical_layer." + _py_module_name));
2018-10-24 18:17:58 +00:00
boost::python::object PhysicalLayer = module.attr("PhysicalLayer");
_physicalLayer = PhysicalLayer(_sps);
2018-10-25 16:01:24 +00:00
update_constellations(_physicalLayer.attr("get_constellations")());
} catch (boost::python::error_already_set const&) {
2018-10-24 18:17:58 +00:00
PyErr_Print();
return false;
}
return true;
}
bool adaptive_dfe_impl::stop()
{
gr::thread::scoped_lock lock(d_setlock);
2018-10-31 11:36:09 +00:00
GR_LOG_DEBUG(d_logger, "adaptive_dfe_impl::stop()");
GILLock gil_lock;
2018-10-24 18:17:58 +00:00
_physicalLayer = boost::python::object();
VOLK_SAFE_DELETE(_taps_samples);
VOLK_SAFE_DELETE(_taps_symbols);
VOLK_SAFE_DELETE(_hist_samples);
VOLK_SAFE_DELETE(_hist_symbols);
2018-10-24 18:17:58 +00:00
return true;
}
2018-10-31 11:36:09 +00:00
gr_complex adaptive_dfe_impl::filter() {
gr_complex filter_output = 0;
volk_32fc_x2_dot_prod_32fc(&filter_output,
_hist_samples+_hist_sample_index,
_taps_samples,
_nB+_nF+1);
gr_complex dot_symbols=0;
for (int l=0; l<_nW; ++l) {
assert(_hist_symbol_index+l < 2*_nW);
dot_symbols += _hist_symbols[_hist_symbol_index+l]*_taps_symbols[l];
}
filter_output += dot_symbols;
gr_complex known_symbol = _symbols[_symbol_counter];
bool const is_known = std::abs(known_symbol) > 1e-5;
if (not is_known) { // not known
gr_complex const descrambled_filter_output = std::conj(_scramble[_symbol_counter]) * filter_output;
gr::digital::constellation_sptr constell = _constellations[_constellation_index];
unsigned int jc = constell->decision_maker(&descrambled_filter_output);
gr_complex descrambled_symbol = 0;
constell->map_to_points(jc, &descrambled_symbol);
2018-10-29 15:07:20 +00:00
if (_save_soft_decisions) {
float const err = std::abs(descrambled_filter_output - descrambled_symbol);
_npwr_counter[_constellation_index] += (_npwr_counter[_constellation_index] < _npwr_max_time_constant);
float const alpha = 1.0f/_npwr_counter[_constellation_index];
_npwr[_constellation_index] = (1-alpha)*_npwr[_constellation_index] + alpha*err;
std::vector<float> const soft_dec = constell->calc_soft_dec(descrambled_filter_output, _npwr[_constellation_index]);
std::copy(soft_dec.begin(), soft_dec.end(), std::back_inserter<std::vector<float> >(_vec_soft_decisions));
// std::cout << "soft_dec " << _npwr[_constellation_index] << " : ";
// for (int k=0; k<soft_dec.size(); ++k) {
// std::cout << soft_dec[k] << " ";
// }
// std::cout << "\n";
}
known_symbol = _scramble[_symbol_counter] * descrambled_symbol;
}
gr_complex err = filter_output - known_symbol;
for (int j=0; j<_nB+_nF+1; ++j) {
assert(_hist_sample_index+j < 2*(_nB+_nF+1));
_taps_samples[j] -= _mu*err*std::conj(_hist_samples[_hist_sample_index+j]);
}
for (int j=0; j<_nW; ++j) {
assert(_hist_symbol_index+j < 2*_nW);
_taps_symbols[j] -= _mu*err*std::conj(_hist_symbols[_hist_symbol_index+j]) + _alpha*_taps_symbols[j];
}
// if (_sample_counter < 80*5)
// std::cout << "filter: " << _symbol_counter << " " << _sample_counter << " " << filter_output << " " << known_symbol << " " << std::abs(err) << std::endl;
if (is_known || true) {
_hist_symbols[_hist_symbol_index] = _hist_symbols[_hist_symbol_index + _nW] = known_symbol;
if (++_hist_symbol_index == _nW)
_hist_symbol_index = 0;
}
_descrambled_symbols[_symbol_counter] = filter_output*std::conj(_scramble[_symbol_counter]);
return filter_output*std::conj(_scramble[_symbol_counter++]);
}
2018-10-24 18:17:58 +00:00
2018-10-31 11:36:09 +00:00
void adaptive_dfe_impl::recenter_filter_taps() {
// get max(abs(taps))
ssize_t const idx_max = std::distance(_taps_samples,
std::max_element(_taps_samples+_nB+1-3*_sps, _taps_samples+_nB+1+3*_sps,
[](gr_complex a, gr_complex b) {
return std::norm(a) < std::norm(b);
}));
GR_LOG_DEBUG(d_logger, str(boost::format("idx_max=%2d abs(tap_max)=%f") % idx_max % std::abs(_taps_samples[idx_max])));
if (idx_max-_nB-1 >= 2*_sps && _saved_samples.empty() && _ignore_filter_updates==0) {
// maximum is right of the center tap
// -> shift taps to the left left
GR_LOG_DEBUG(d_logger, "shift left");
std::copy(_taps_samples+2*_sps, _taps_samples+_nB+_nF+1, _taps_samples);
std::fill_n(_taps_samples+_nB+_nF+1-2*_sps, 2*_sps, gr_complex(0));
// and omit the next two calls to filter in order to keep the alignment between samples and taps
_ignore_filter_updates = 2;
} else if (idx_max-_nB-1 <= -2*_sps && _saved_samples.empty() && _ignore_filter_updates==0) {
// maximum is left of the center tap
// -> shift taps to the right
GR_LOG_DEBUG(d_logger, "shift right");
std::copy_backward(_taps_samples, _taps_samples+_nB+_nF+1-2*_sps,
_taps_samples+_nB+_nF+1);
std::fill_n(_taps_samples, 2*_sps, gr_complex(0));
// save the last 2*_sps samples (will be reinserted)
_saved_samples.resize(2*_sps);
std::reverse_copy(_hist_samples+_hist_sample_index+(_nB+_nF+1)-2*_sps,
_hist_samples+_hist_sample_index+(_nB+_nF+1),
_saved_samples.begin());
// shift samples index
_hist_sample_index += (_nB+_nF+1)-2*_sps;
_hist_sample_index %= (_nB+_nF+1);
// set the 1st 2*_sps unknown old samples to zero
for (int l=_hist_sample_index; l<_hist_sample_index+2*_sps; ++l) {
int const k = (l+_nB+_nF+1)%(2*(_nB+_nF+1));
_hist_samples[l] = _hist_samples[k] = gr_complex(0);
}
}
}
void adaptive_dfe_impl::set_mode(std::string mode) {
gr::thread::scoped_lock lock(d_setlock);
2018-10-31 11:36:09 +00:00
GR_LOG_DEBUG(d_logger, "adaptive_dfe_impl::set_mode "+ mode);
GILLock gil_lock;
try {
_physicalLayer.attr("set_mode")(mode);
} catch (boost::python::error_already_set const&) {
PyErr_Print();
return;
}
}
2018-10-25 16:01:24 +00:00
void adaptive_dfe_impl::update_constellations(boost::python::object obj)
{
int const n = boost::python::extract<int>(obj.attr("__len__")());
_constellations.resize(n);
_npwr.resize(n);
_npwr_counter.resize(n);
2018-10-25 16:01:24 +00:00
for (int i=0; i<n; ++i) {
boost::python::numpy::ndarray const& array = boost::python::numpy::array(obj[i]);
char const* data = array.get_data();
int const m = array.shape(0);
std::vector<gr_complex> constell(m);
std::vector<int> pre_diff_code(m);
for (int j=0; j<m; ++j) {
std::memcpy(&constell[j], data+9*j, sizeof(gr_complex));
pre_diff_code[j] = (data+9*j)[8];
}
unsigned int const rotational_symmetry = 0;
unsigned int const dimensionality = 1;
_constellations[i] = gr::digital::constellation_calcdist::make(constell, pre_diff_code, rotational_symmetry, dimensionality);
_npwr[i] = 0.0f;
_npwr_counter[i] = 0;
2018-10-25 16:01:24 +00:00
}
}
bool adaptive_dfe_impl::update_frame_information(boost::python::object obj)
2018-10-25 16:01:24 +00:00
{
int const n = boost::python::extract<int>(obj.attr("__len__")());
2018-10-29 15:07:20 +00:00
assert(n==4);
2018-10-25 16:01:24 +00:00
boost::python::numpy::ndarray array = boost::python::numpy::array(obj[0]);
char const* data = array.get_data();
int const m = array.shape(0);
_symbols.resize(m);
_scramble.resize(m);
_descrambled_symbols.resize(m);
_samples.clear();
2018-10-25 16:01:24 +00:00
for (int i=0; i<m; ++i) {
std::memcpy(&_symbols[i], data+16*i, sizeof(gr_complex));
std::memcpy(&_scramble[i], data+16*i+8, sizeof(gr_complex));
// std::cout << "get_frame " << i << " " << _symbols[i] << " " << _scramble[i] << std::endl;
2018-10-25 16:01:24 +00:00
}
_constellation_index = boost::python::extract<int> (obj[1]);
_need_samples = boost::python::extract<bool>(obj[2]);
2018-10-29 15:07:20 +00:00
_save_soft_decisions = boost::python::extract<bool>(obj[3]);
return true;
2018-10-25 16:01:24 +00:00
}
bool adaptive_dfe_impl::update_doppler_information(boost::python::object obj)
2018-10-25 16:01:24 +00:00
{
int const n = boost::python::extract<int>(obj.attr("__len__")());
assert(n==2);
bool const do_continue = boost::python::extract<bool>(obj[0]);
2018-10-27 14:06:54 +00:00
if (!do_continue) {
_phase = 0;
_df = 0;
std::fill_n(_hist_samples, 2*(_nB+_nF+1), gr_complex(0));
_hist_sample_index = 0;
_sample_counter = 0;
return false;
2018-10-27 14:06:54 +00:00
}
float const doppler = boost::python::extract<float>(obj[1]);
update_pll(doppler);
return true;
}
void adaptive_dfe_impl::update_pll(float doppler) {
if (doppler == 0)
return;
float const delta_f = doppler/_sps;
if (_df == 0) { // init
_ud = _df = delta_f;
} else {
float const ud_old = _ud;
_ud = delta_f;
_df +=_b[0]*_ud + _b[1]*ud_old;
}
GR_LOG_DEBUG(d_logger, str(boost::format("PLL: df=%f delta_f=%f (rad/sample)") % _df % delta_f));
}
void adaptive_dfe_impl::insert_sample(gr_complex z) {
// insert sample into the circular buffer
_hist_samples[_hist_sample_index] = _hist_samples[_hist_sample_index+_nB+_nF+1] = z * gr_expj(-_phase);
if (++_hist_sample_index == _nB+_nF+1)
_hist_sample_index = 0;
2018-10-31 11:36:09 +00:00
if (z != gr_complex(0))
update_local_oscillator();
}
void adaptive_dfe_impl:: update_local_oscillator() {
_phase += _df;
if (_phase > M_PI)
_phase -= 2*M_PI;
if (_phase < -M_PI)
_phase += 2*M_PI;
}
bool adaptive_dfe_impl::get_correlation_tag(uint64_t i, uint64_t& offset, float& phase_est) {
std::vector<tag_t> v;
get_tags_in_window(v, 0, i,i+1);
for (int j=0; j<v.size(); ++j) {
2018-10-31 11:36:09 +00:00
std::cout << "tag " << v[j].key << " " << v[j].offset-nitems_read(0) << " " << v[j].value << std::endl;
if (v[j].key == pmt::mp("phase_est")) {
phase_est = pmt::to_double(v[j].value);
std::cout << "phase_est " << v[j].offset <<" " << nitems_read(0) << " " << phase_est << std::endl;
offset = v[j].offset - nitems_read(0);
}
if (v[j].key == pmt::mp("corr_est")) {
double const corr_est = pmt::to_double(v[j].value);
2018-10-27 14:06:54 +00:00
if (v[j].offset - nitems_read(0) == offset)// && corr_est > 10e3)
return true;
}
}
return false;
2018-10-25 16:01:24 +00:00
}
2018-10-24 18:17:58 +00:00
} /* namespace digitalhf */
} /* namespace gr */