1
0
Fork 0
mirror of https://github.com/hb9fxq/gr-digitalhf synced 2024-11-05 13:55:53 +00:00
gr-digitalhf/python/physical_layer/STANAG_4285.py

111 lines
4.7 KiB
Python
Raw Normal View History

2018-10-25 16:01:24 +00:00
## -*- python -*-
import numpy as np
from gnuradio import digital
class PhysicalLayer(object):
"""Physical layer description for STANAG 4285"""
2018-10-27 14:06:54 +00:00
def __init__(self, mode=1):
2018-10-25 16:01:24 +00:00
"""For STANAG 4258 the mode has to be set manually: mode=0 -> BPSK, mode=1 -> QPSK, mode=2 -> 8PSK"""
self._constellations = [PhysicalLayer.make_psk(2, [0,1]),
PhysicalLayer.make_psk(4, [0,1,3,2]),
PhysicalLayer.make_psk(8, [1,0,2,3,6,7,5,4])]
self._preamble = [PhysicalLayer.get_preamble(), 0] ## BPSK
self._data = [PhysicalLayer.get_data(), mode] ## according to the mode
self._counter = 0
2018-10-27 14:06:54 +00:00
self._is_first_frame = True
2018-10-25 16:01:24 +00:00
def set_mode(self, mode):
2018-10-25 16:01:24 +00:00
"""For STANAG 4258 the mode has to be set manually: mode=0 -> BPSK, mode=1 -> QPSK, mode=2 -> 8PSK"""
self._data[1] = mode
def get_constellations(self):
return self._constellations
def get_frame(self):
"""returns the known+unknown symbols and scrambling"""
print('-------------------- get_frame --------------------',self._counter)
2018-10-27 14:06:54 +00:00
return self._preamble if self._counter == 0 else self._data
2018-10-25 16:01:24 +00:00
def get_doppler(self, s):
2018-10-25 16:01:24 +00:00
"""used for doppler shift update, for determining which frame to provide next,
and for stopping at end of data/when the signal quality is too low"""
print('-------------------- get_doppler --------------------',self._counter)
2018-10-27 14:06:54 +00:00
success,doppler = self.quality_preamble(s) if self._counter == 0 else self.quality_data(s)
self._counter = (self._counter+1)&1 if success else 0
self._is_first_frame = not success
return success,doppler
def quality_preamble(self, s):
idx = range(80)
if self._is_first_frame:
idx = range(30,80)
z = s[idx]*np.conj(self._preamble[0]['symb'][idx])
success = np.sum(np.real(z)<0) < 30
doppler = PhysicalLayer.data_aided_frequency_estimation(s[idx], self._preamble[0]['symb'][idx])
return success,doppler
def quality_data(self, s):
known_symbols = np.mod(range(176),48)>=32
success = np.sum(np.real(s[known_symbols])<0) < 20
return success,0 ## no doppler estimate for data frames
2018-10-25 16:01:24 +00:00
@staticmethod
def get_preamble():
"""preamble symbols + scrambler(=1)"""
state = np.array([1,1,0,1,0], dtype=np.bool)
taps = np.array([0,0,1,0,1], dtype=np.bool)
p = np.zeros(80, dtype=np.uint8)
for i in range(80):
p[i] = state[-1]
state = np.concatenate(([np.sum(state&taps)&1], state[0:-1]))
a = np.zeros(80, dtype=[('symb',np.complex64), ('scramble', np.complex64)])
## BPSK modulation
constellation = PhysicalLayer.make_psk(2,range(2))['points']
a['symb'] = constellation[p,]
a['scramble'] = 1
return a
@staticmethod
def get_data():
"""data symbols + scrambler; for unknown symbols 'symb'=0"""
state = np.array([1,1,1,1,1,1,1,1,1], dtype=np.bool)
taps = np.array([0,0,0,0,1,0,0,0,1], dtype=np.bool)
p = np.zeros(176, dtype=np.uint8)
for i in range(176):
p[i] = np.sum(state[-3:]*[4,2,1])
for j in range(3):
state = np.concatenate(([np.sum(state&taps)&1], state[0:-1]))
a=np.zeros(176, dtype=[('symb',np.complex64), ('scramble', np.complex64)])
## PSK-8 modulation
constellation = PhysicalLayer.make_psk(8,range(8))['points']
a['scramble'] = constellation[p,]
2018-10-27 14:06:54 +00:00
known_symbols = np.mod(range(176),48)>=32
a['symb'][known_symbols] = a['scramble'][known_symbols]
2018-10-25 16:01:24 +00:00
return a
@staticmethod
def make_psk(n, gray_code):
c = np.zeros(n, dtype=[('points', np.complex64), ('symbols', np.uint8)])
c['points'] = np.exp(2*np.pi*1j*np.array(range(n))/n)
c['symbols'] = gray_code
return c
2018-10-27 08:05:19 +00:00
@staticmethod
def data_aided_frequency_estimation(x,c):
"""Data-Aided Frequency Estimation for Burst Digital Transmission,
Umberto Mengali and M. Morelli, IEEE TRANSACTIONS ON COMMUNICATIONS,
VOL. 45, NO. 1, JANUARY 1997"""
z = x*np.conj(c) ## eq (2)
L0 = len(z)
N = L0//2
R = np.zeros(N, dtype=np.complex64)
for i in range(N):
R[i] = 1.0/(L0-i)*np.sum(z[i:]*np.conj(z[0:L0-i])) ## eq (3)
m = np.array(range(N), dtype=np.float)
w = 3*((L0-m)*(L0-m+1)-N*(L0-N))/(N*(4*N*N - 6*N*L0 + 3*L0*L0-1)) ## eq (9)
mod_2pi = lambda x : np.mod(x-np.pi, 2*np.pi) - np.pi
fd = np.sum(w[1:] * mod_2pi(np.diff(np.angle(R)))) ## eq (8)
return fd