1
0
Fork 0
mirror of https://github.com/hb9fxq/gr-digitalhf synced 2025-01-08 20:44:09 +00:00
gr-digitalhf/python/physical_layer/STANAG_4285.py

167 lines
6.4 KiB
Python
Raw Normal View History

2018-10-25 16:01:24 +00:00
## -*- python -*-
import numpy as np
2019-05-10 09:48:56 +00:00
import common
from digitalhf.digitalhf_swig import viterbi27
2019-03-28 16:23:15 +00:00
class Deinterleaver(object):
"S4285 deinterleaver"
def __init__(self, incr):
## incr = 12 -> L
## incr = 1 -> S
self._buf = [np.zeros(incr*(31-i) + 1) for i in range(32)]
def push(self, a):
assert(len(a) == 32)
for i in range(32):
self._buf[i][0] = a[i]
self._buf[i] = np.roll(self._buf[i],1)
def fetch(self):
return np.array([self._buf[(9*i)%32][0] for i in range(32)])
2019-05-10 09:48:56 +00:00
MODE_BPSK=0
MODE_QPSK=1
MODE_8PSK=2
MODES = { ## [BPS]['const'] [BPS]['punct'] [BPS]['repeat']
2019-05-14 14:23:03 +00:00
'2400': {'const': MODE_8PSK, 'punct': ['11', '10'] , 'repeat': 1, 'deintl_multiple': 4},
'1200': {'const': MODE_QPSK, 'punct': [ '1', '1'] , 'repeat': 1, 'deintl_multiple': 2},
'600': {'const': MODE_BPSK, 'punct': [ '1', '1'] , 'repeat': 1, 'deintl_multiple': 1},
'300': {'const': MODE_BPSK, 'punct': [ '1', '1'] , 'repeat': 2, 'deintl_multiple': 1},
'150': {'const': MODE_BPSK, 'punct': [ '1', '1'] , 'repeat': 4, 'deintl_multiple': 1},
'75': {'const': MODE_BPSK, 'punct': [ '1', '1'] , 'repeat': 8, 'deintl_multiple': 1}
2019-05-10 09:48:56 +00:00
}
DEINTERLEAVER_INCR = { 'S': 1, 'L': 12 }
2018-10-25 16:01:24 +00:00
class PhysicalLayer(object):
"""Physical layer description for STANAG 4285"""
def __init__(self, sps):
"""intialization"""
self._sps = sps
self._frame_counter = 0
self._is_first_frame = True
self._constellations = [self.make_psk(2, [0,1]),
self.make_psk(4, [0,1,3,2]),
self.make_psk(8, [1,0,2,3,6,7,5,4])]
self._preamble = self.get_preamble()
self._data = self.get_data()
2019-05-10 09:48:56 +00:00
self._viterbi_decoder = viterbi27(0x6d, 0x4f)
self._mode_description = None
2018-10-25 16:01:24 +00:00
def set_mode(self, mode):
"""set modulation and interleaver: 'BPS/S' or 'BPS/L'"""
self._mode_description = mode
2019-05-10 09:48:56 +00:00
bps,intl = mode.split('/')
self._mode = MODES[bps]['const']
2019-05-14 14:23:03 +00:00
self._deinterleaver = Deinterleaver(DEINTERLEAVER_INCR[intl] * MODES[bps]['deintl_multiple'])
2019-05-10 09:48:56 +00:00
self._depuncturer = common.Depuncturer(repeat = MODES[bps]['repeat'],
puncture_pattern = MODES[bps]['punct'])
2018-10-25 16:01:24 +00:00
def get_mode(self):
return self._mode_description
2018-10-25 16:01:24 +00:00
def get_constellations(self):
return self._constellations
def get_next_frame(self, symbols):
"""returns a tuple describing the frame:
[0] ... known+unknown symbols and scrambling
[1] ... modulation type after descrambling
[2] ... a boolean indicating if the processing should continue
2018-10-29 15:07:20 +00:00
[3] ... a boolean indicating if the soft decision for the unknown symbols are saved"""
if len(symbols) == 0: ## 1st preamble
self._frame_counter = 0
2018-10-25 16:01:24 +00:00
success,frame_description = True,[]
if (self._frame_counter%2) == 0: ## current frame is a data frame
2019-05-10 09:48:56 +00:00
frame_description = [self._preamble,MODE_BPSK,success,False]
else: ## current frame is a preamble frame
idx = range(30,80)
z = symbols[idx]*np.conj(self._preamble['symb'][idx])
success = bool(np.sum(np.real(z)<0) < 30)
frame_description = [self._data,self._mode,success,True]
self._frame_counter += 1
return frame_description
def get_doppler(self, iq_samples):
r = {'success': False, ## -- quality flag
'doppler': 0} ## -- doppler estimate (rad/symb)
if len(iq_samples) == 0:
return r
sps = self._sps
zp = np.array([x for x in self._preamble['symb'][9:40]
for _ in range(sps)], dtype=np.complex64)
cc = np.correlate(iq_samples, zp)
imax = np.argmax(np.abs(cc[0:18*sps]))
pks = cc[(imax,imax+31*sps),]
tpks = cc[imax+15*sps:imax+16*sps]
r['success'] = bool(np.mean(np.abs(pks)) > 5*np.mean(np.abs(tpks)))
r['doppler'] = np.diff(np.unwrap(np.angle(pks)))[0]/31/self._sps if r['success'] else 0
return r
2018-10-25 16:01:24 +00:00
def get_preamble_z(self):
"""preamble symbols for preamble correlation"""
a = PhysicalLayer.get_preamble()
return 2,np.array([z for z in a['symb'][0:31] for _ in range(self._sps)])
2019-03-28 16:23:15 +00:00
def decode_soft_dec(self, soft_dec):
2019-05-10 09:48:56 +00:00
n = len(soft_dec)
r = []
for i in range(0,n,32):
2019-03-28 16:23:15 +00:00
self._deinterleaver.push(soft_dec[i:i+32])
2019-05-10 09:48:56 +00:00
r.extend(self._deinterleaver.fetch().tolist())
rd = self._depuncturer.process(np.array(r, dtype=np.float32))
decoded_bits = self._viterbi_decoder.udpate(rd)
quality = 100.0*self._viterbi_decoder.quality()/(2*len(decoded_bits))
return decoded_bits,quality
2019-03-28 16:23:15 +00:00
2018-10-25 16:01:24 +00:00
@staticmethod
def get_preamble():
"""preamble symbols + scrambler(=1)"""
state = np.array([1,1,0,1,0], dtype=np.bool)
taps = np.array([0,0,1,0,1], dtype=np.bool)
p = np.zeros(80, dtype=np.uint8)
for i in range(80):
p[i] = state[-1]
state = np.concatenate(([np.sum(state&taps)&1], state[0:-1]))
a = np.zeros(80, common.SYMB_SCRAMBLE_DTYPE)
2018-10-25 16:01:24 +00:00
## BPSK modulation
constellation = PhysicalLayer.make_psk(2,range(2))['points']
a['symb'] = constellation[p,]
a['scramble'] = 1
return a
@staticmethod
def get_data():
"""data symbols + scrambler; for unknown symbols 'symb'=0"""
state = np.array([1,1,1,1,1,1,1,1,1], dtype=np.bool)
taps = np.array([0,0,0,0,1,0,0,0,1], dtype=np.bool)
2018-10-25 16:01:24 +00:00
p = np.zeros(176, dtype=np.uint8)
for i in range(176):
p[i] = np.sum(state[-3:]*[4,2,1])
for _ in range(3):
2018-10-25 16:01:24 +00:00
state = np.concatenate(([np.sum(state&taps)&1], state[0:-1]))
a = np.zeros(176, common.SYMB_SCRAMBLE_DTYPE)
## 8PSK modulation
2018-10-25 16:01:24 +00:00
constellation = PhysicalLayer.make_psk(8,range(8))['points']
a['scramble'] = constellation[p,]
2018-10-27 14:06:54 +00:00
known_symbols = np.mod(range(176),48)>=32
a['symb'][known_symbols] = a['scramble'][known_symbols]
2018-10-25 16:01:24 +00:00
return a
@staticmethod
def make_psk(n, gray_code):
"""generates n-PSK constellation data"""
2019-05-14 14:23:03 +00:00
c = np.zeros(n, common.CONST_DTYPE)
c['points'] = np.exp(2*np.pi*1j*np.arange(n)/n)
2018-10-25 16:01:24 +00:00
c['symbols'] = gray_code
return c