1
0
Fork 0
mirror of https://github.com/hb9fxq/gr-digitalhf synced 2024-11-05 05:55:53 +00:00
gr-digitalhf/python/physical_layer/MIL_STD_188_110A.py

270 lines
11 KiB
Python
Raw Normal View History

2018-11-02 18:29:33 +00:00
## -*- python -*-
from __future__ import print_function
import numpy as np
## ---- Walsh-4 codes -----------------------------------------------------------
WALSH = np.array([[0,0,0,0, 0,0,0,0],
[0,1,0,1, 0,1,0,1],
[0,0,1,1, 0,0,1,1],
[0,1,1,0, 0,1,1,0],
[0,0,0,0, 1,1,1,1],
[0,1,0,1, 1,0,1,0],
[0,0,1,1, 1,1,0,0],
[0,1,1,0, 1,0,0,1]],
dtype=np.uint8)
def walsh_to_num(w):
return sum(w*(1<<np.arange(8)[::-1]))
FROM_WALSH = -np.ones(256, dtype=np.int8)
for i in range(8):
FROM_WALSH[walsh_to_num(WALSH[i][:])] = i
## ---- tri-bit codes -----------------------------------------------------------
TRIBIT = np.zeros((8,32), dtype=np.uint8)
for i in range(8):
TRIBIT[i][:] = np.concatenate([WALSH[i][:] for j in range(4)])
## ---- tri-bit scramble sequence for preamble ----------------------------------
TRIBIT_SCRAMBLE = np.array(
[7,4,3,0,5,1,5,0,2,2,1,1,5,7,4,3,5,0,2,6,2,1,6,2,0,0,5,0,5,2,6,6],
dtype=np.uint8)
def n_psk(n,x):
return np.complex64(np.exp(2j*np.pi*x/n))
## ---- preamble symbols ---------------------------------------------------------
D1=D2=C1=C2=C3=0 ## not known
PRE_SYMBOLS = n_psk(2, np.concatenate(
[TRIBIT[i][:] for i in [0,1,3,0,1,3,1,2,0,D1,D2,C1,C2,C3,0]]))
PRE_SYMBOLS[9*32:14*32] = 0
## ---- preamble scramble symbols ------------------------------------------------
PRE_SCRAMBLE = n_psk(8, np.concatenate([TRIBIT_SCRAMBLE for i in range(15)]))
## ---- data scrambler -----------------------------------------------------------
class ScrambleData(object):
"""data scrambling sequence generator"""
def __init__(self):
self.reset()
def reset(self):
self._state = 0xBAD
self._counter = 0
def next(self):
if self._counter == 160:
self.reset()
for j in range(8):
self._advance()
self._counter += 1
return self._state&7
def _advance(self):
msb = self._state>>11
self._state = (self._state<<1)&4095
if msb:
self._state ^= 0x053
return self._state
## ---- constellation indices ---------------------------------------------------
MODE_BPSK=0
MODE_QPSK=1
MODE_8PSK=2
## ---- mode definitions --------------------------------------------------------
MODE = [[{} for x in range(8)] for y in range(8)]
MODE[7][6] = {'bit_rate':4800, 'ci':MODE_8PSK, 'interleaver':['N', 1, 1], 'unknown':32,'known':16, 'nsymb': 1, 'coding_rate': -1 }
MODE[7][7] = {'bit_rate':2400, 'ci':MODE_8PSK, 'interleaver':['N', 1, 1], 'unknown':32,'known':16, 'nsymb': 1, 'coding_rate':1./2}
MODE[6][4] = {'bit_rate':2400, 'ci':MODE_8PSK, 'interleaver':['S', 40, 72], 'unknown':32,'known':16, 'nsymb': 1, 'coding_rate':1./2}
MODE[4][4] = {'bit_rate':2400, 'ci':MODE_8PSK, 'interleaver':['L', 40,576], 'unknown':32,'known':16, 'nsymb': 1, 'coding_rate':1./2}
MODE[6][5] = {'bit_rate':1200, 'ci':MODE_QPSK, 'interleaver':['S', 40, 36], 'unknown':20,'known':20, 'nsymb': 1, 'coding_rate':1./2}
MODE[4][5] = {'bit_rate':1200, 'ci':MODE_QPSK, 'interleaver':['L', 40,288], 'unknown':20,'known':20, 'nsymb': 1, 'coding_rate':1./2}
MODE[6][6] = {'bit_rate': 600, 'ci':MODE_BPSK, 'interleaver':['S', 40, 18], 'unknown':20,'known':20, 'nsymb': 1, 'coding_rate':1./2}
MODE[4][6] = {'bit_rate': 600, 'ci':MODE_BPSK, 'interleaver':['L', 40,144], 'unknown':20,'known':20, 'nsymb': 1, 'coding_rate':1./2}
MODE[6][7] = {'bit_rate': 300, 'ci':MODE_BPSK, 'interleaver':['S', 40, 18], 'unknown':20,'known':20, 'nsymb': 1, 'coding_rate':1./4}
MODE[4][7] = {'bit_rate': 300, 'ci':MODE_BPSK, 'interleaver':['L', 40,144], 'unknown':20,'known':20, 'nsymb': 1, 'coding_rate':1./4}
MODE[7][4] = {'bit_rate': 150, 'ci':MODE_BPSK, 'interleaver':['S', 40, 18], 'unknown':20,'known':20, 'nsymb': 1, 'coding_rate':1./8}
MODE[5][4] = {'bit_rate': 150, 'ci':MODE_BPSK, 'interleaver':['L', 40,144], 'unknown':20,'known':20, 'nsymb': 1, 'coding_rate':1./8}
MODE[7][5] = {'bit_rate': 75, 'ci':MODE_QPSK, 'interleaver':['S', 10, 9], 'unknown':-1,'known': 0, 'nsymb':32, 'coding_rate':1./2}
MODE[5][4] = {'bit_rate': 75, 'ci':MODE_QPSK, 'interleaver':['L', 20, 36], 'unknown':-1,'known': 0, 'nsymb':32, 'coding_rate':1./2}
## ---- physcal layer class -----------------------------------------------------
class PhysicalLayer(object):
"""Physical layer description for MIL-STD-188-110 Appendix A"""
def __init__(self, sps):
"""intialization"""
self._sps = sps
self._frame_counter = 0
self._is_first_frame = True
self._constellations = [self.make_psk(2, [0,1]),
self.make_psk(4, [0,1,3,2]),
self.make_psk(8, [0,1,3,2,7,6,4,5])] ## TODO: check 8PSK gray code
self._preamble = self.get_preamble()
self._pre_counter = -1
self._d1d2 = [-1,-1] ## D1,D2
self._mode = {}
self._scr_data = ScrambleData()
##self._data = self.get_data()
def get_constellations(self):
return self._constellations
def get_frame(self):
"""returns a tuple describing the frame:
[0] ... known+unknown symbols and scrambling
[1] ... modulation type after descrambling
[2] ... a boolean indicating whethere or not raw IQ samples needed
[3] ... a boolean indicating if the soft decision for the unknown
symbols are saved"""
print('-------------------- get_frame --------------------',
self._pre_counter, self._frame_counter)
if self._pre_counter != 0:
self._scr_data.reset()
return [self._preamble,MODE_BPSK,True,False]
num_symb = 11520 if self._mode['interleaver'][0] == 'L' else 1440
a = np.zeros(num_symb, dtype=[('symb', np.complex64),
('scramble', np.complex64)])
n_known = self._mode['known']
n_unknown = self._mode['unknown']
counter_d1d2 = 0
for i in range(0,num_symb,n_known+n_unknown):
a['symb'][i :i+n_unknown ] = 0
a['symb'][i+n_unknown:i+n_unknown+n_known] = 1
if i>=num_symb-2*(n_unknown+n_known):
a['symb'][i+0:i+ 8] *= n_psk(2, WALSH[self._d1d2[counter_d1d2]][:])
a['symb'][i+8:i+16] *= n_psk(2, WALSH[self._d1d2[counter_d1d2]][:])
counter_d1d2 += 1
a['scramble'] = n_psk(8, np.array([self._scr_data.next() for _ in range(num_symb)]))
a['symb'] *= a['scramble']
self._frame_counter += 1
return [a, self._mode['ci'],False,True]
def get_doppler(self, symbols, iq_samples):
"""returns a tuple
[0] ... quality flag
[1] ... doppler estimate (rad/symbol) if available"""
print('-------------------- get_doppler --------------------',
self._frame_counter,len(symbols),len(iq_samples))
success = False
doppler = 0
if self._frame_counter == 0:
success,doppler = self.quality_preamble(symbols,iq_samples)
if len(symbols) != 0:
data = [FROM_WALSH[walsh_to_num
(np.real
(np.sum
(symbols[i:i+32].reshape((4,8)),0))<0)]
for i in range(0,15*32,32)]
print('data=',data)
self._pre_counter = sum((np.array(data[11:14])&3)
*(1<<2*np.arange(3)[::-1]))
self._d1d2 = data[9:11]
self._mode = MODE[data[9]][data[10]]
print('pre_counter', self._pre_counter, 'mode', self._mode)
self._is_first_frame = not success
success = True
else:
for i in range(0,len(symbols),40):
print(i,symbols[i:i+40], np.mean(np.abs(symbols[i:i+40])))
success = np.mean(np.abs(symbols[0:40])) > 0.5
if not success:
self._frame_counter = 0
self._pre_counter = -1
return success,doppler
def is_preamble(self):
return self._frame_counter == 0
def quality_preamble(self, symbols, iq_samples):
"""quality check and doppler estimation for preamble"""
success = True
doppler = 0
if len(iq_samples) != 0:
zp = np.conj(self.get_preamble_z(self._sps))[9*self._sps:]
cc = np.array([np.sum(iq_samples[i*self._sps:(3*32+i-9)*self._sps]*zp)
for i in range(4*32)])
acc = np.abs(cc)
for i in range(0,len(cc),32):
print('i=%3d: '%i,end='')
for j in range(32):
print('%3.0f ' % acc[i+j], end='')
print()
imax = np.argmax(np.abs(cc[0:2*32]))
pks = cc[(imax,imax+3*16,imax+3*16+1,imax+3*32),]
apks = np.abs(pks)
print('imax=', imax, 'apks=',apks)
success = np.mean(apks[(0,3),]) > 2*np.mean(apks[(1,2),])
doppler = np.diff(np.unwrap(np.angle(pks[(0,3),])))[0]/(3*32) if success else 0
print('success=', success, 'doppler=', doppler)
#if len(symbols) != 0:
## TODO: check the symbols
return success,doppler
@staticmethod
def get_preamble():
"""preamble symbols + scrambler"""
a=np.zeros(15*32, dtype=[('symb', np.complex64),
('scramble', np.complex64)])
a['symb'] = PRE_SCRAMBLE*PRE_SYMBOLS
a['scramble'] = PRE_SCRAMBLE
return a
@staticmethod
def get_preamble_z(sps):
"""preamble symbols for preamble correlation"""
a = PhysicalLayer.get_preamble()
return np.array([z for z in a['symb'][0:32*3]
for i in range(sps)])
@staticmethod
def make_psk(n, gray_code):
"""generates n-PSK constellation data"""
c = np.zeros(n, dtype=[('points', np.complex64),
('symbols', np.uint8)])
c['points'] = n_psk(n,np.arange(n))
c['symbols'] = gray_code
return c
if __name__ == '__main__':
def gen_data_scramble():
def advance(s):
msb = s>>11
s = (s<<1)&((1<<12)-1)
if msb: s ^= 0x053
return s
a = np.zeros(160, dtype=np.uint8)
s = 0xBAD
for i in range(160):
for j in range(8): s = advance(s)
a[i] = s&7;
return a
p=PhysicalLayer(5)
z1=np.array([x for x in PRE_SYMBOLS for i in range(5)])
z2=np.array([x for x in PRE_SCRAMBLE for i in range(5)])
z=z1*z2
for i in range(3):
print(i, all(z[32*5*i:32*5*(i+1)] == z[32*5*(3+i):32*5*(3+i+1)]))
print(np.sum(np.sum(z[0:32*5] * np.conj(z[32*5*3:32*5*4]))))
print(WALSH[1][:])
print(sum(WALSH[1][:]*(1<<np.array(range(7,-1,-1)))))
print(FROM_WALSH)
print(gen_data_scramble())
s=ScrambleData()
print(type(s))
print([s.next() for _ in range(160)])
print([s.next() for _ in range(160)])